Simulink/TrueTime platform. In future work, we plan
to extend the design framework to achieve other group
oriented tasks such as output synchronization, forma-
tion control, and rendezvous. We will also extend the
work to formations in R
3
.
ACKNOWLEDGEMENTS
This work is supported in part by the National Sci-
ence Foundation (NSF CCF-0820088), the U.S. Army
Research Office (ARO W911NF-10-1-0005), the
U.S. Air Force Office of Scientific Research (MURI
FA9550-06-0312), the U.S Army Research Labo-
ratory (ARL W911NF-087-2-0004), and Lockheed-
Martin. The views and conclusions contained herein
are those of the authors and should not be interpreted
as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the U.S.
Government.
REFERENCES
Arcak, M. (2007). Passivity as a design tool for group co-
ordination. IEEE Transactions on Automatic Control,
52(8):1380–1390.
Bai, H., Arcak, M., and Wen, J. T. (2008). Rigid body atti-
tude coordination without inertial frame information.
Automatica, 44(12):3170 – 3175.
Chopra, N., Berestesky, P., and Spong, M. (2008). Bilat-
eral teleoperation over unreliable communication net-
works. IEEE Transactions on Control Systems Tech-
nology, 16(2):304–313.
Fax, J. A. and Murray, R. M. (2004). Information flow
and cooperative control of vehicle formations. IEEE
Transactions on Automatic Control, 49(9):1465 –
1476.
Godsil, C. and Royle, G. (2001). Algebraic Graph Theory.
Springer-Verlag New York, Inc.
Igarashi, Y., Hatanaka, T., Fujita, M., and Spong, M. (2008).
Passivity-based output synchronization in se(3). In
American Control Conference, pages 723–728.
Ihle, I.-A. F., Arcak, M., and Fossen, T. I. (2007). Passivity-
based designs for synchronized path-following. Auto-
matica, 43(9):1508 – 1518.
Kottenstette, N. and Antsaklis, P. (2007). Stable digital con-
trol networks for continuous passive plants subject to
delays and data dropouts. 46th IEEE Conference on
Decision and Control, pages 4433–4440.
Kottenstette, N., Hall, J., Koutsoukos, X., Antsaklis, P.,
and Sztipanovits, J. (2009). Digital control of mul-
tiple discrete passive plants over networks. Inter-
national Journal of Systems, Control and Communi-
cations (IJSCC): Special Issue on Progress in Net-
worked Control Systems. To Appear.
Kottenstette, N. and Porter, J. (2009). Digital Passive Atti-
tude and Altitude Control Schemes for Quadrotor Air-
craft. 7th International Conference on Control and
Automation.
Lawrence, D. A., Frew, E. W., and Pisano, W. J. (2008).
Lyapunov vector fields for autonomous uav flight con-
trol. AIAA Journal of Guidance, Control, and Dynam-
ics, 31(5):1220–1229.
MathWorks, I. T. (2008). Simulink. Dynamic System Simu-
lation for MATLAB, Version 7.1.
Niemeyer, G. and Slotine, J.-J. E. (2004). Telemanipulation
with time delays. International Journal of Robotics
Research, 23(9):873 – 890.
Ohlin, M., Henriksson, D., and Cervin, A. (2007).
TrueTime 1.5 Reference Manual. Dept. of
Automatic Control, Lund University, Sweden.
http://www.control.lth.se/truetime/.
Olfati-Saber, R. (2006). Flocking for multi-agent dynamic
systems: algorithms and theory. IEEE Transactions
on Automatic Control, 51(3):401–420.
Olfati-Saber, R., Fax, J. A., and Murray, R. M. (2007). Con-
sensus and cooperation in networked multi-agent sys-
tems. Proceedings of the IEEE, 95(1):215–233.
Ren, W., Beard, R., and Atkins, E. (2005). A survey of con-
sensus problems in multi-agent coordination. In Pro-
ceedings of the American Control Conference, pages
1859–1864 vol. 3.
Stramigioli, S., Secchi, C., van der Schaft, A. J., and Fan-
tuzzi, C. (2005). Sampled data systems passivity and
discrete port-hamiltonian systems. IEEE Transactions
on Robotics, 21(4):574 – 587.
van der Schaft, A. (1999). L2-Gain and Passivity in Nonlin-
ear Control. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA.
Wang, W. and Slotine, J.-J. (2006). Contraction analysis of
time-delayed communications and group cooperation.
IEEE Transactions on Automatic Control, 51(4):712–
717.
Zames, G. (1966). On the input-output stability of time-
varying nonlinear feedback systems part one: Con-
ditions derived using concepts of loop gain, conicity,
and positivity. IEEE Transactions on Automatic Con-
trol, 11(2):228–238.
ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics
62