A SUB-OPTIMAL KALMAN FILTERING FOR DISCRETE-TIME LTI SYSTEMS WITH LOSS OF DATA

Naeem Khan, Sajjad Fekri, Dawei Gu

2010

Abstract

In this paper a sub-optimal Kalman filter estimator is designed for the plants subject to loss of data or insufficient observation. The methodology utilized is based on the closed-loop compensation algorithm which is computed through the so-called Modified Linear Prediction Coefficient (MLPC) observation scheme. The proposed approach is aimed at the artificial observation vector which in fact corrects the prediction cycle when loss of data occurs. A non-trivial mass-spring-dashpot case study is also selected to demonstrate some of the key issues that arise when using the proposed sub-optimal filtering algorithm under missing data.

References

  1. Allison, P. D. (2001). Missing Data. Sage Publications, 1st edition.
  2. Fekri, S., Athans, M., and Pascoal, A. (2007). Robust multiple model adaptive control (RMMAC): A case study. International Journal of Adaptive Control And Signal Procession, 21:1-30.
  3. Huang, M. and Dey, S. (2007). Stability of kalman filtering with markovian packet loss. Automatica, 43:598-607.
  4. Khan, N. and Gu, D.-W. (2009a). ”Properties of a robust kalman filter”. In The 2nd IFAC Conference on Intelligent Control System and Signal Processing. ICONS, Turkey.
  5. Khan, N. and Gu, D.-W. (2009b). ”State estimation in the case of loss of observations”. In ICROS-SICE International Joint Conference. ICCAS-SICE, Japan.
  6. Li Xie, L. X. (2007). ”Peak covariance stability of a random riccati equation arising from kalman filtering with observation losses”. Journal System Science and Complxity, 20:262-279.
  7. Liu, X. and Goldsmith, A. (2004). ”Kalman filtering with partial observation loss”. In IEEE Conference on Decision and Control, 43.
  8. Micheli, M. (2001). ”Random sampling of a continuous time stochastic dynamical system: analysis, state estimation and applications”. Master's thesis,, University of Calfornia, Barkeley.
  9. Rabiner, L. and Juang, B.-H. (1993). Fundamentals of Speech Recognition. Prentice Hall International, Inc.
  10. Schenato, L. (2005). ”Kalman filtering for network control system with random delay and packet loss”. In European Community Research Information Society Technologies, volume MUIR, Italy.
  11. Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., and Sastry, S. S. (2007). Foundation of control and estimation over lossy network. Proceeding of The IEEE, 95(1):163-187.
  12. Sinopoli, B. and Schenato, L. (2007). ”Kalman filtering with intermittent observations”. IEEE transactions on Automatic Control, 49(9).
Download


Paper Citation


in Harvard Style

Khan N., Fekri S. and Gu D. (2010). A SUB-OPTIMAL KALMAN FILTERING FOR DISCRETE-TIME LTI SYSTEMS WITH LOSS OF DATA . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8425-02-7, pages 201-207. DOI: 10.5220/0002953402010207


in Bibtex Style

@conference{icinco10,
author={Naeem Khan and Sajjad Fekri and Dawei Gu},
title={A SUB-OPTIMAL KALMAN FILTERING FOR DISCRETE-TIME LTI SYSTEMS WITH LOSS OF DATA},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2010},
pages={201-207},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002953402010207},
isbn={978-989-8425-02-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - A SUB-OPTIMAL KALMAN FILTERING FOR DISCRETE-TIME LTI SYSTEMS WITH LOSS OF DATA
SN - 978-989-8425-02-7
AU - Khan N.
AU - Fekri S.
AU - Gu D.
PY - 2010
SP - 201
EP - 207
DO - 10.5220/0002953402010207