A SUB-OPTIMAL KALMAN FILTERING FOR DISCRETE-TIME LTI SYSTEMS WITH LOSS OF DATA
Naeem Khan, Sajjad Fekri, Dawei Gu
2010
Abstract
In this paper a sub-optimal Kalman filter estimator is designed for the plants subject to loss of data or insufficient observation. The methodology utilized is based on the closed-loop compensation algorithm which is computed through the so-called Modified Linear Prediction Coefficient (MLPC) observation scheme. The proposed approach is aimed at the artificial observation vector which in fact corrects the prediction cycle when loss of data occurs. A non-trivial mass-spring-dashpot case study is also selected to demonstrate some of the key issues that arise when using the proposed sub-optimal filtering algorithm under missing data.
References
- Allison, P. D. (2001). Missing Data. Sage Publications, 1st edition.
- Fekri, S., Athans, M., and Pascoal, A. (2007). Robust multiple model adaptive control (RMMAC): A case study. International Journal of Adaptive Control And Signal Procession, 21:1-30.
- Huang, M. and Dey, S. (2007). Stability of kalman filtering with markovian packet loss. Automatica, 43:598-607.
- Khan, N. and Gu, D.-W. (2009a). ”Properties of a robust kalman filter”. In The 2nd IFAC Conference on Intelligent Control System and Signal Processing. ICONS, Turkey.
- Khan, N. and Gu, D.-W. (2009b). ”State estimation in the case of loss of observations”. In ICROS-SICE International Joint Conference. ICCAS-SICE, Japan.
- Li Xie, L. X. (2007). ”Peak covariance stability of a random riccati equation arising from kalman filtering with observation losses”. Journal System Science and Complxity, 20:262-279.
- Liu, X. and Goldsmith, A. (2004). ”Kalman filtering with partial observation loss”. In IEEE Conference on Decision and Control, 43.
- Micheli, M. (2001). ”Random sampling of a continuous time stochastic dynamical system: analysis, state estimation and applications”. Master's thesis,, University of Calfornia, Barkeley.
- Rabiner, L. and Juang, B.-H. (1993). Fundamentals of Speech Recognition. Prentice Hall International, Inc.
- Schenato, L. (2005). ”Kalman filtering for network control system with random delay and packet loss”. In European Community Research Information Society Technologies, volume MUIR, Italy.
- Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K., and Sastry, S. S. (2007). Foundation of control and estimation over lossy network. Proceeding of The IEEE, 95(1):163-187.
- Sinopoli, B. and Schenato, L. (2007). ”Kalman filtering with intermittent observations”. IEEE transactions on Automatic Control, 49(9).
Paper Citation
in Harvard Style
Khan N., Fekri S. and Gu D. (2010). A SUB-OPTIMAL KALMAN FILTERING FOR DISCRETE-TIME LTI SYSTEMS WITH LOSS OF DATA . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8425-02-7, pages 201-207. DOI: 10.5220/0002953402010207
in Bibtex Style
@conference{icinco10,
author={Naeem Khan and Sajjad Fekri and Dawei Gu},
title={A SUB-OPTIMAL KALMAN FILTERING FOR DISCRETE-TIME LTI SYSTEMS WITH LOSS OF DATA},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2010},
pages={201-207},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002953402010207},
isbn={978-989-8425-02-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - A SUB-OPTIMAL KALMAN FILTERING FOR DISCRETE-TIME LTI SYSTEMS WITH LOSS OF DATA
SN - 978-989-8425-02-7
AU - Khan N.
AU - Fekri S.
AU - Gu D.
PY - 2010
SP - 201
EP - 207
DO - 10.5220/0002953402010207