As long as the set of equality and similarity relations and canonical forms for ges-
talts, as listed in chapter 3, is not complete there is little sense in starting the coding
endeavor. While for infinite 2D lattices there is an elaborated mathematical theory at
hand for more than hundred years [2], we have no proof for completeness of the list
of Section 3 indicating possible different appearances of the same finite gestalt with
respect to all our gestalt constructions yet.
As indicated in Section 3 in the description of a composed gestalt simplicity in the
tree structure (flatness of hierarchy) has to be balanced against the achieved squared
residual sum. Another open problem concerns the scale: Gestalt instances with a deep
tree composed from many objects distributed on a large area should be assessed on a
different scale. But the common displacement error measure is a prerequisite of mu-
tual comparison for the gestalts. We are looking forward to interesting future work.
References
1. Agusti-Melchor, M., Valiente-Gonzalez, J.-M., Rodas-Jorda, A.: Lattice Extraction Based
on Symmetry Analysis. VISAPP 2008, INSTIC, Portugal, ISBN: 978-989-8111-21-0
(2008) 396-402
2. Bravais, A., "Mémoire sur les systèmes formés par les points distribués régulièrement sur
un plan ou dans l'espace", J. Ecole Polytech. Vol. 19 (1850) 1–128
3. Desolneux A., Moisan L., Morel J.-M.: From Gestalt Theory to Image Analysis. Springer,
Berlin (2008)
4. Hartley, R., Zisserman, A.: Multiple View Geometry. Cambridge Unv. Press, sec. edition
(2003)
5. Horne, C. E.: Geometric symmetry in patterns and tilings. Woodhead Publishing. Abington
Hall, England, ISBN 1 85573 492 3 (2000)
6. W. Gander, G. H. Golub, R. Strebel: Least Squares Fitting of Circles and Ellipses. BIT
Numerical Mathematics, Springer Netherlands, Volume 34, Number 4 / Dezember (1994)
7. van Leeuwen, J. (ed.): Computer Science Today. Recent Trends and Developments. Lec-
ture Notes in Computer Science, Vol. 1000. Springer-Verlag, Berlin Heidelberg New York
(1995)
8. Michaelsen, E., Meidow, J.: Basic Definitions and Operations for Gestalt Algebra. In:
Gurevich, I., Niemann, H., Salvetti, O. (eds.) Image Mining Theory and Applications. In-
stic Press, Portugal, ISBN 978-989-8111-42-5 (2009) 53-62.
9. Michaelsen, E., Stilla, U., Soergel, U., Doktorski L.: Extraction of building polygons from
SAR images: Grouping and decision-level in the GESTALT system. Pattern Recognition
Letters, to appear 2010, online under http://dx.doi.org/10.1016/j.patrec.2009.10.004 (2009)
10. Michaelsen, E., Arens, M., Doktorski, L.: Elements of a Gestalt Algebra: Steps Towards
Understanding Images and Scenes. In: Gurevich, I., Niemann, H., Salvetti, O. (eds.): Image
Mining Theory and Applications. Instic Press, Portugal, ISBN 978-898-8111-25-8 (2008)
65-73.
11. Nagao, M., Matsuyama, T.: A Structural Analysis of Complex Aerial Photographs. Plenum
Press, New York London (1980)
12. Porway, J., Wang, Q., Zhu, S. C.: A Hierarchical and Contextual Model for Aerial Image
Parsing. Int. J. Comput. Vis. DOI 10.1007/s11263-009-0306-1, online at Springerlink.com,
(2009)
13. Priese, L., Schmitt, F., Hering, N. (2009): Grouping of Semantically Similar Image Posi-
tions. In: Salberg, A-B., Hardeberg, J. Y., Jenssen, R. (eds.): SCIA 2009, Oslo, Norway,
58