anytime models can advantageously be used in many
types of time critical applications during resource
and data insufficient conditions.
ACKNOWLEDGEMENTS
This work was sponsored by the Hungarian National
Scientific Fund (OTKA K 78576) and the
Hungarian-Portuguese Intergovernmental S&T
Cooperation Program.
REFERENCES
Andoga, R., Főző, L., and Madarász, L., 2008 Use of
anytime control algorithms in the area of small
turbojet engines. In Proc. of the 6th IEEE Int. Conf. on
Computational Cybernetics, Stará Lesná, Slovakia,
Nov 28-30, pp. 33-36.
Baranyi, P., Y. Yam, Y., Yang, Ch-T. and Várkonyi-
Kóczy, A.R., 1999. Complexity Reduction of a
Rational General Form. In Proc. of the 8th IEEE Int.
Conf. on Fuzzy Systems, Seoul, Korea, Aug. 22-25, 1,
pp. 366-371.
Baranyi P., Lei, K., and Yam, Y., 2000. Complexity
reduction of singleton based neuro-fuzzy algorithm.
In Proc. of the 2000 IEEE International Conference
on Systems, Man, and Cybernetics, Oct. 8-11,
Nashville, USA, 4, pp. 2503-2508.
Baranyi, P., Várkonyi-Kóczy, A. R, Várlaki, P.,
Michelberger, P. and Patton, R. J., 2001. Singular
Value Based Model Approximation. In N. Mastorakis
(ed.) Problems in Applied Mathematics and
Computational Intelligence (Mathematics and
Computers in Science and Engineering), World
Scientific and Engineering Society Press, Danvers, pp.
119-124.
Baranyi, P. and Várkonyi-Kóczy, A. R., 2002. Adaptation
of SVD Based Fuzzy Reduction via Minimal
Expansion. IEEE Trans. on Instrumentation and
Measurement, 51(2), pp. 222-226.
Battacharya, R. and Balas, G. J., 2004. Anytime Control
Algorithms: Model Reduction Approach. AIAA
Journal of Guidance, Control and Dynamics, 27(5).
Fontanelli, D., Greco, L., and Bicchi, A, 2008. Anytime
Control Algorithms for Embedded Real-Time
Systems. In Egerstedt, M, Mishra, B. (eds) Hybrid
Systems: Computation and Control. Springer-Verlag,
Heidelberg, pp. 158-166.
Klement, E. P, Kóczy, L. T., and Moser, B., 1999. Are
fuzzy systems universal approximators?. Int. J.
General Systems, 28(2-3), pp. 259-282.
Madarász, L., Andoga, R., Főző L., and Lazar T., 2009.
Situational control, modeling and diagnostics of large
scale systems. In Rudas, I., Fodor, J., Kacprzyk, J.
(eds.) Towards Intelligent Engineering and
Information Technology. Springer-Verlag, Heidelberg,
pp. 153-164.
Rojas, O. J, Goodwin, G. C., Seron, M. M, and Feuer, A.,
2004. An SVD based strategy for receding horizon
control of input constrained linear systems. Int.
Journal of Robust and Nonlinear Control.
Takács, O. and Várkonyi-Kóczy, A. R., 2002. SVD Based
Complexity Reduction of Rule Bases with Non-Linear
Antecedent Fuzzy Sets, IEEE Trans. on
Instrumentation and Measurement, 51(2), pp. 217-
221.
Takács, O. and Várkonyi-Kóczy, A. R., 2003. SVD-based
Complexity Reduction of “Near PSGS” Fuzzy
Systems, In Proc. of the IEEE Int. Symp. on Intelligent
Signal Processing, Budapest, Hungary, Sep. 4-6, pp.
31-36.
Takács, O. and Várkonyi-Kóczy, A. R., 2004. „Iterative
Evaluation of Anytime PSGS Fuzzy Systems.” In
Sincak, P., Vascak, J., Hirota, K. (eds.) Quo Vadis
Machine Intelligence? - The Progressive Trends in
Intelligent Technologies, World Scientific Press,
Heidelberg, pp. 93-106.
Tanaka, K., Taniguchi, T., and H. O. Wang, 1999. Robust
and Optimal Fuzzy Control: A Linear Matrix
Inequality Approach. In Proc. of the 1999 IFAC World
Congress, Beijing, July 1999, pp. 213-218.
Tanaka K. and Wang, H. O, 2001. Fuzzy Control Systems
Design and Analysis, John Wiley & Sons, Inc. New
York.
Várkonyi-Kóczy, A. R., Ruano, A., Baranyi, P. and
Takács, O., 2001. Anytime Information Processing
Based on Fuzzy and Neural Network Models. In Proc.
of the 2001 IEEE Instrumentation and Measurement
Technology Conf., Budapest, Hungary, May 21-23, pp.
1247-1252.
Várkonyi-Kóczy, A. R., and Samu, G., 2004. Anytime
System Scheduler for Insufficient Resource
Availability. Int. J. of Advanced Computational
Intelligence and Intelligent Informatics, 8(5), pp. 488-
494.
Várkonyi-Kóczy, A. R., 2008. State Dependant Anytime
Control Methodology for Non-linear Systems. Int. J.l
of Advanced Computational Intelligence and
Intelligent Informatics, March, 12(2), , pp. 198-205.
Yam, Y., 1997. Fuzzy Approximation via Grid Sampling
and Singular Value Decomposition. In Proc. of the
IEEE Trans. on Systems, Men, and Cybernetics, 27(6),
pp. 933-951.
Zilberstein, S., 1993. Operational Rationality through
Compilation of Anytime Algorithms, PhD Thesis.
Zilberstein, S., 1996. Using Anytime Algorithms in
Intelligent systems. AI Magazine, 17(3) , pp. 73-83.
ICINCO 2010 - 7th International Conference on Informatics in Control, Automation and Robotics
220