STATISTICAL ASSOCIATIVE CLASSIFICATION OF MAMMOGRAMS - The SACMiner Method

Carolina Y. V. Watanabe, Marcela X. Ribeiro, Caetano Traina Jr., Agma J. M. Traina

2010

Abstract

In this paper, we present a new method called SACMiner for mammogram classification using statistical association rules. The method employs two new algorithms the StARMiner* and the Voting classifier (V-classifier). StARMiner* mines association rules over continuous feature values, avoiding introducing bottleneck and inconsistencies in the learning model due to a discretization step. The V-classifier decides which class best represents a test image, based on the statistical association rules mined. The experiments comparing SACMiner with other traditional classifiers in detecting breast cancer in mammograms show that the proposed method reaches higher values of accuracy, sensibility and specificity. The results indicate that SACMiner is well-suited to classify mammograms. Moreover, the proposed method has a low computation cost, being linear on the number of dataset items, when compared with other classifiers. Furthermore, SACMiner is extensible to work with other types of medical images.

References

  1. Agrawal, R., Imielinski, T., and Swami, A. N. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD ICMD, pages 207-216, Washington, D.C.
  2. Antonie, M.-L., Zaane, O. R., and Coman, A. (2003). Associative classifiers for medical images. In LNAI 2797, MMCD, pages 68-83. Springer-Verlag.
  3. Asuncion, A. and Newman, D. (2007). ”UCI machine learning repository”.
  4. Aumann, Y. and Lindell, Y. (1999). A statistical theory for quantitative association rules. In Press, A., editor, The fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 261- 270, San Diego, California, United States.
  5. Balan, A. G. R., Traina, A. J. M., Traina Jr., C., and Marques, P. M. d. A. (2005). Fractal analysis of image textures for indexing and retrieval by content. In 18th IEEE Intl. Symposium on Computer-Based Medical Systems - CBMS, pages 581-586, Dublin, Ireland. IEEE Computer Society.
  6. Domingos, P. and Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 29(2-3):103-130.
  7. Dua, S., Singh, H., and Thompson, H. W. (2009). Associative classification of mammograms using weighted rules. Expert Syst. Appl., 36(5).
  8. Holte, R. C. (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11:63-91.
  9. Ordonez, C. and Omiecinski, E. (1999). Discovering association rules based on image content. In IEEE Forum on Research and Technology Advances in Digital Libraries (ADL 7899), pages 38 - 49, Baltimore, USA.
  10. Quinlan, R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA. Morgan Kaufmann.
  11. Ribeiro, M. X., Balan, A. G. R., Felipe, J. C., Traina, A. J. M., and Traina Jr., C. (2005). Mining Statistical Association Rules to Select the Most Relevant Medical Image Features. In First International Workshop on Mining Complex Data (IEEE MCD'05), pages 91-98, Houston, USA. IEEE Computer Society.
  12. Ribeiro, M. X., Bugatti, P. H., Traina, A. J. M., Traina Jr., C., Marques, P. M. A., and Rosa, N. A. (2009). Supporting content-based image retrieval and computeraided diagnosis systems with association rule-based techniques. Data & Knowledge Engineering.
  13. Srikant, R. and Agrawal, R. (1996). Mining quantitative association rules in large relational tables. In ACM SIGMOD International Conference on Management of Data, pages 1-12, Montreal, Canada. ACM Press.
  14. Wang, X., Smith, M., and Rangayyan, R. (2004). Mammographic information analysis through association-rule mining. In IEEE CCGEI, pages 1495-1498.
Download


Paper Citation


in Harvard Style

Y. V. Watanabe C., X. Ribeiro M., Traina Jr. C. and J. M. Traina A. (2010). STATISTICAL ASSOCIATIVE CLASSIFICATION OF MAMMOGRAMS - The SACMiner Method . In Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8425-05-8, pages 121-128. DOI: 10.5220/0002970501210128


in Bibtex Style

@conference{iceis10,
author={Carolina Y. V. Watanabe and Marcela X. Ribeiro and Caetano Traina Jr. and Agma J. M. Traina},
title={STATISTICAL ASSOCIATIVE CLASSIFICATION OF MAMMOGRAMS - The SACMiner Method},
booktitle={Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2010},
pages={121-128},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002970501210128},
isbn={978-989-8425-05-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - STATISTICAL ASSOCIATIVE CLASSIFICATION OF MAMMOGRAMS - The SACMiner Method
SN - 978-989-8425-05-8
AU - Y. V. Watanabe C.
AU - X. Ribeiro M.
AU - Traina Jr. C.
AU - J. M. Traina A.
PY - 2010
SP - 121
EP - 128
DO - 10.5220/0002970501210128