Committee, U. N. S. (2009). National Screen-
ing Programme for Diabetic Retinopathy.
http://www.retinalscreening.nhs.uk/.
Fleming, A. D., Philip, S., and Goatman, K. A. (2006). Au-
tomated microaneurysm detection using local contrast
normalization and local vessel detection. IEEE Trans-
actions on Medical Imaging, 25(9):1223–1232.
Frame, A. J., Undrill, P. E., Cree, M. J., Olson, J. A.,
McHardy, K. C., Sharp, P. F., and Forrester, J. (May
1998). A comparison of computer based classification
methods applied to the detection of microaneurysms
in ophthalmic fluorescein angiograms. Computers in
Biology and Medicine, 28:225238.
Harding, S., Greenwood, R., Aldington, S., Gibson, J.,
Owens, D., Taylor, R., Kohner, E., Scanlon, P.,
and Leese, G. (December 2003). Grading and dis-
ease management in national screening for diabetic
retinopathy in england and wales. Diabetic Medicine,
20:965971.
Hejlesen, O., Ege, B., Englemeier, K.-H., Aldington, S.,
McCanna, L., and Bek, T. (2004). Tosca-imaging de-
veloping internet based image processing software for
screening and diagnosis of diabetic retinopathy. MED-
INFO 2004, pages 222–226.
Johnson, N. P. (2004). Advantages to transforming the re-
ceiver operating characteristic (roc) curve into like-
lihood ratio co-ordinates. Stastics in Medicine,
23:22572266.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (May 13,
1983). Optimization by simulated annealing. Science,
220:671–680.
Lazar, I., Hajdu, A., and Quareshi, R. J. (2010). Retinal mi-
croaneurysm detection based on intensity profile anal-
ysis. 8th International Conference on Applied Infor-
matics.
Mizutani, A., Muramatsua, C., Hatanakab, Y., Suemoria,
S., Haraa, T., and Fujita, H. (2009). Automated
microaneurysm detection method based on double-
ring filter in retinal fundus images. Medical Imag-
ing 2009: Computer-Aided Diagnosis, Proceedings of
SPIE, 7260, 7260:1N1 – 1N8.
Niemeijer, M., Staal, J., Abramoff, M. D., Suttorp-Schulten,
M. A., and van Ginneken, B. (May 2005). Automatic
detection of red lesions in digital color fundus pho-
tographs. IEEE Transactions on Medical Imaging,
24:584–592.
Niemeijer, M., van Ginneken, B., Cree, M., Mizutani,
A., Quellec, G., Sanchez, C., Zhang, B., Hornero,
R., Lamard, M., Muramatsu, C., Wu, X., Cazuguel,
G., You, J., Mayo, A., Li, Q., Hatanaka, Y., Coch-
ener, B., Roux, C., Karray, F., Garcia, M., Fujita, H.,
and Abramoff, M. (2010). Retinopathy online chal-
lenge: Automatic detection of microaneurysms in dig-
ital color fundus photographs. IEEE Transactions on
Medical Imaging, 29(1):185–195.
Reza, A. M. (2004). Realization of the contrast limited
adaptive histogram equalization (clahe) for real-time
image enhancement. The Journal of VLSI Signal Pro-
cessing, 38:35–44.
Spencer, T., Olson, J. A., McHardy, K. C., Sharp, P. F.,
and Forrester, J. V. (May 1996). An image-processing
strategy for the segmentation and quantification of mi-
croaneurysms in fluorescein angiograms of the oc-
ular fundus. Computers and Biomedical Research,
29:284302.
Staal, J., Abramoff, M. D., Niemeijer, M., Viergever, M. A.,
and van Ginneken, B. (2004). Ridge-based vessel seg-
mentation in color images of the retina. IEEE Trans-
actions on Medical Imaging, 23:501 – 509.
Walter, T., Massin, P., Arginay, A., Ordonez, R., Jeulin, C.,
and Klein, J. C. (2007). Automatic detection of mi-
croaneurysms in color fundus images. Medical Image
Analysis, 11:555–566.
Zuiderveld, K. (1994). Contrast limited adaptive histogram
equalization. Graphics gems, IV:474–485.
AN OPTIMAL VOTING SCHEME FOR MICROANEURYSM CANDIDATE EXTRACTORS USING SIMULATED
ANNEALING
87