HUBFIRE - A MULTI-CLASS SVM BASED JPEG STEGANALYSIS USING HBCL STATISTICS AND FR INDEX

Veena H. Bhat, Krishna S., P. Deepa Shenoy, Venugopal K. R., L. M. Patnaik

2010

Abstract

Blind Steganalysis attempts to detect steganographic data without prior knowledge of either the embedding algorithm or the ‘cover’ image. This paper proposes new features for JPEG blind steganalysis using a combination of Huffman Bit Code Length (HBCL) Statistics and File size to Resolution ratio (FR Index); the Huffman Bit File Index Resolution (HUBFIRE) algorithm proposed uses these functionals to build the classifier using a multi-class Support Vector Machine (SVM). JPEG images spanning a wide range of resolutions are used to create a ‘stego-image’ database employing three embedding schemes – the advanced Least Significant Bit encoding technique, that embeds in the spatial domain, a transform-domain embedding scheme: JPEG Hide-and-Seek and Model Based Steganography which employs an adaptive embedding technique. This work employs a multi-class SVM over the proposed ‘HUBFIRE’ algorithm for statistical steganalysis, which is not yet explored by steganalysts. Experiments conducted prove the model’s accuracy over a wide range of payloads and embedding schemes.

References

  1. Bhat, H, V., Krishna, S., Shenoy, P, D., Venugopal, K, R., Patnaik, L, M., 2010. JPEG Steganalysis using HBCL Statistics and FR Index. To be published in the Proceedings of Pacific Asia Workshop on Intelligence and Security Informatics.
  2. Burges, C., 1998. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2, 121-167.
  3. Boser, B., Guyon, I., Vapnik, V., 1992. A Training Algorithm for Optimal Margin Classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 5, 144-152.
  4. Chen, Ming.,Zhang, Ru., Niu, Xinxin., Yang, Yixian., 2006. Analysis of Current Steganography Tools: Classification & Features. Proceedings of the 2006 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 384-387.
  5. Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to Support Vector Machines, Cambridge University Press.
  6. Herve, Jegou., Matthijs, Douze., Cordelia, Schmid., 2008. Hamming Embedding and Weak Geometry Consistency for Large Scale Image Search. Proceedings of the Tenth European Conference on Computer Vision, 304-317.
  7. Hsu, Chih-Wei., Lin, Chih-Jen., 2002. A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transactions on Neural Networks, 415-425.
  8. Joachims, T., 1998. Text categorization with support vector machines: Learning with many relevant features. Proceeding of the Tenth European Conference on Machine Learning (ECML), 137-142.
  9. Kristin, P, Bennet., Campbell, Colin., 2000. Support Vector Machines: Hype or Hallelujah ? SIGKDD Explorations, 2, 1-13.
  10. Lyu, Siwei., Farid, Hany., 2002. Detecting Hidden Messages Using Higher-Order Statistics and Support Vector Machines. Proceedings of the Fifth International Workshop on Information Hiding, 2578, 340-354.
  11. Miche, Yoan., Bas, Patrick., Lendasse, Amaury., Jutten, Christian., Simula, Olli., 2009. Reliable Steganalysis using a Minimum Set of Samples and Features. EURASIP Journal of Information Security.
  12. Pevný, Tomas., Fridrich, J., 2006. Multi-class Blind Steganalysis for JPEG Images, Computer Science and Software Engineering , 939-942.
  13. Pevný, Tomas., Fridrich, J., 2007. Merging Markov and DCT features for Multi-class JPEG Steganalysis, Proceedings SPIE - Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents, 03-04.
  14. Pfitzmann, B., 1996. Information Hiding Terminology. Proceedings of the First International Workshop on Information Hiding, 347-350.
  15. Sallee, P., Model-based Methods for Steganography and Steganalysis, 2005. International Journal of Image Graphics, 167-190.
  16. Ullerich, Christian., Westfeld, Andreas., 2008. Weakness of MB2. Digital Watermarking, 127-142.
  17. Vapnik, N, Vladimir., 1995. Nature of Statistical Learning Theory, Springer.
  18. Vapnik, N, Vladimir., 1998. Statistical Learning Theory, York: Wiley.
  19. Xuezeng, Pan., Li, Zhuo., Jian, Chen., Jiang, Xiaoning., Zeng, Xianting., 2008. A New Blind Steganalysis Method for JPEG Images. International Conference on Computer Science and Software Engineering. 939- 942.
Download


Paper Citation


in Harvard Style

H. Bhat V., S. K., Shenoy P., K. R. V. and M. Patnaik L. (2010). HUBFIRE - A MULTI-CLASS SVM BASED JPEG STEGANALYSIS USING HBCL STATISTICS AND FR INDEX . In Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2010) ISBN 978-989-8425-18-8, pages 447-452. DOI: 10.5220/0002989004470452


in Bibtex Style

@conference{secrypt10,
author={Veena H. Bhat and Krishna S. and P. Deepa Shenoy and Venugopal K. R. and L. M. Patnaik},
title={HUBFIRE - A MULTI-CLASS SVM BASED JPEG STEGANALYSIS USING HBCL STATISTICS AND FR INDEX},
booktitle={Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2010)},
year={2010},
pages={447-452},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002989004470452},
isbn={978-989-8425-18-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2010)
TI - HUBFIRE - A MULTI-CLASS SVM BASED JPEG STEGANALYSIS USING HBCL STATISTICS AND FR INDEX
SN - 978-989-8425-18-8
AU - H. Bhat V.
AU - S. K.
AU - Shenoy P.
AU - K. R. V.
AU - M. Patnaik L.
PY - 2010
SP - 447
EP - 452
DO - 10.5220/0002989004470452