STRUCTURE-PRESERVING ALGORITHMS FOR DISCRETE-TIME ALGEBRAIC MATRIX RICCATI EQUATIONS
Vasile Sima
2010
Abstract
Structure-preserving algorithms for solving discrete-time algebraic matrix Riccati equations are presented. The proposed techniques extract the stable deflating subspaces for extended, inverse-free symplectic matrix pencils. The algorithms are based on skew-Hamiltonian/Hamiltonian pencils derived by an extended Cayley transformation, which only involves matrix additions and subtractions. The structure-preserving approach has the potential to avoid the numerical difficulties which are encountered for a traditional, non-structured solution, returned by the currently available software tools.
References
- Bender, D. J. and Laub, A. J. (1987a). The linear-quadratic optimal regulator for descriptor systems. IEEE Trans. Automat. Contr., AC-32(8):672-688.
- Bender, D. J. and Laub, A. J. (1987b). The linear-quadratic optimal regulator for descriptor systems: Discretetime case. Automatica, 23(1):71-85.
- Benner, P., Byers, R., Losse, P., Mehrmann, V., and Xu, H. (2007). Numerical solution of real skewHamiltonian/Hamiltonian eigenproblems. Technical report, Technische Universität Chemnitz, Chemnitz.
- Benner, P., Byers, R., Mehrmann, V., and Xu, H. (2002). Numerical computation of deflating subspaces of skew Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal. Appl., 24(1):165-190.
- Lancaster, P. and Rodman, L. (1995). The Algebraic Riccati Equation. Oxford University Press, Oxford.
- Mehrmann, V. (1991). The Autonomous Linear Quadratic Control Problem. Theory and Numerical Solution, volume 163 of Lect. Notes in Control and Information Sciences. Springer-Verlag, Berlin.
- Paige, C. and Van Loan, C. F. (1981). A Schur decomposition for Hamiltonian matrices. Lin. Alg. Appl., 41:11- 32.
- Pappas, T., Laub, A. J., and Sandell, N. R. (1980). On the numerical solution of the discrete-time algebraic Riccati equation. IEEE Trans. Automat. Contr., AC25(4):631-641.
- Van Dooren, P. (1981). A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat. Comput., 2(2):121-135.
- Xu, H. (2006). On equivalence of pencils from discrete-time and continuous-time control. Lin. Alg. Appl., 414:97- 124.
Paper Citation
in Harvard Style
Sima V. (2010). STRUCTURE-PRESERVING ALGORITHMS FOR DISCRETE-TIME ALGEBRAIC MATRIX RICCATI EQUATIONS . In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8425-00-3, pages 187-192. DOI: 10.5220/0003000101870192
in Bibtex Style
@conference{icinco10,
author={Vasile Sima},
title={STRUCTURE-PRESERVING ALGORITHMS FOR DISCRETE-TIME ALGEBRAIC MATRIX RICCATI EQUATIONS},
booktitle={Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2010},
pages={187-192},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003000101870192},
isbn={978-989-8425-00-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - STRUCTURE-PRESERVING ALGORITHMS FOR DISCRETE-TIME ALGEBRAIC MATRIX RICCATI EQUATIONS
SN - 978-989-8425-00-3
AU - Sima V.
PY - 2010
SP - 187
EP - 192
DO - 10.5220/0003000101870192