Furthermore, they produced the best stability (the SD values of 1.1% and 0.8% aver-
aged over all datasets), followed by the PAR classifier (1.2%). Results obtained indicate,
that proposed methods of grasping movement recognition based on the AR model as an
EMG signal feature extraction procedure, produced accurate and reliable decisions, es-
pecially in the cases with greater number of features.
References
1. Boostani R., Moradi M., Evaluation of the forearm EMG signal features for the control of a
prosthetic hand, Physiological Measurement 24 (2003), 309-319
2. De Luca C., J., Adam R., et al., Decomposition of surface EMG signals, Journal of Neu-
ropsychology 96, (2006) 1646-1657
3. Dietterich T.G., Approximate statistical tests for comparing supervised classification learn-
ing algorithms, Neural Computing 10 (1998) 1895-1923
4. Duda R., Hart P., Stork D., Pattern Classification, John Wiley (2000)
5. Ferguson S., Dunlop G., Grasp recognition from myoelectric signals, Proc. 2002 Aus-
tralasian Conference on Robotics and Automation (2002) 83-87
6. Kuribayachi K., Okimura K. and Taniquichi T., A discrimination system using neural net-
work for EMG-controlled prostheses, Proc. Int. Conf. IEEE Robot and Human Communica-
tion (1992) 63-68
7. Khoshaba T., Badie K., and Hashemi R., EMG pattern classification based on back propaga-
tion neural network for prosthesis control, Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc.
(1990) 1474-1475
8. Reaz M., Hussain M., Techniques of EMG signal analysis: detection, processing, classifica-
tion and applications, Biological Procedures Online 8 (2006) 11-35
9. Schloegl A., A comparison of multivariate autoregressive estimators, Signal Processing 9
(2006) 2426-2429
10. Wang, G., Zhiguo, Y., Xiao, H., et al., Classification of surface EMG signals using harmonic
wavelet packet transform, Physiol. Measurement 27 (2006) 1255-1267
11. Wojtczak P., Amaral T., Dias O., Hand movement recognition based on biosignal analysis,
Engineering Applications of Artificial Intelligence 22 (2009) 608-615
12. Wolczowski A., Krysztoforski K., Control-measurement circuit of myoelectric prosthesis
hand, Acta Bioengineering and Biomechanics 4 (Suppl.) (2002) 576-578
13. Wolczowski A., Kurzynski M., Human-machine interface in bioprosthesis control using
EMG signal classification, Expert Systems 27, (2010) 53-70
86