
Experiments with Single-class Support Vector Data 
Descriptions as a Tool for Vocabulary Grounding 

Aneesh Chauhan1 and Luís Seabra Lopes1,2 

Actividade Transversal em Robótica Inteligente 
IEETA1/DETI2, Universidade de Aveiro, 3810-193 Aveiro, Portugal 

Abstract. This paper explores support vectors as a tool for vocabulary 
acquisition in robots. The intention is to investigate the language grounding 
process at the single-word stage. A social language grounding scenario is 
designed, where a robotic agent is taught the names of the objects by a human 
instructor. The agent grounds the names of these objects by associating them 
with their respective sensor-based category descriptions. A system for 
grounding vocabulary should be incremental, adaptive and support gradual 
evolution.  A novel learning model based on single-class support vector data 
descriptions (SVDD), which conforms to these requirements, is presented. For 
robustness and flexibility, a kernel based implementation of support vectors 
was realized. For this purpose, a sigmoid kernel using histogram pyramid 
matching has been developed. The support vectors are trained based on an 
original approach using genetic algorithms. The model is tested over a series of 
semi-automated experiments and the results are reported. 

1 Introduction 

The meanings of words lie in concomitance with the entities of the world they refer to 
(Barsalou 1999; Harnad 1990). Supported by the studies carried out on populations of 
robots – to study origins, evolution and transfer of language – a new view is emerging 
that considers language a cultural product (Love 2004; Roy and Pentland 2002; 
Seabra Lopes and Chauhan 2007, 2008; Steels and Kaplan 2002). Here the language 
grounding process is considered distributed in nature, where the language symbols are 
acquired (and transferred) through social interactions (Cowley 2007; Loreto and 
Steels 2008; Steels 2007). It can be inferred from this argument that there are two key 
factors that influence language acquisition. On the one hand, language is acquired 
through social interactions, leading to a set of shared language symbols. On the other 
hand, the meaning formation of these symbols is an internal cognitive task, where the 
symbols refer to the real world entities. 

In the past decade, a significant amount of work has been carried out on designing 
robotic agents that acquire their vocabulary through social interactions with humans. 
Many approaches have been designed that use humans to teach robots the names of 
visual concepts. This paper discusses a similar approach, where a robotic agent 
acquires its vocabulary through interaction with a human instructor. The agent is 
embodied with a camera for visual perception and grounds the words taught by the 
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instructor in their respective visual descriptions. 
Similar works have been reported in literature where these approaches differ from 

each other based on the choice of methods for learning visual concepts. Gold et al 
(2009) explore an approach based on dynamic decision trees; Levinson et al (2005) 
investigate Hidden Markov Models for the similar purpose; Roy and Pentland (2002) 
used neural networks and density match in their CELL model; Seabra Lopes and 
Chauhan (2007) used support vector data description (SVDD) (Tax 2001) based 
approach and later investigated multiple other classifiers and classifier combinations 
(2008); and Skocaj et al (2007) use the single most suitable prototype to describe a 
visual concept. The number of words learned in these approaches ranges between 3 
and several tens of categories. 

The learning algorithm for this work is SVDD. The motivation behind this 
preference is to imitate the language development process in children at the single-
word stage. Studies in cognitive language development literature indicate that 
children predominantly learn from positive examples only (Bloom, 2000; Markman, 
1989). A learning methodology to imitate child like word grounding should support 
similar process. SVDD is a single-class classifier that has been shown to be robust at 
novelty detection tasks using only a few positive examples (Tavakkoli et al 2008; Tax 
2001). However, in its original form SVDD is neither incremental, nor can it handle a 
multitude of outliers, making it unsuitable for the open-ended processes like 
vocabulary acquisition. 

In this paper, a novel strategy is presented where the SVDD optimization process 
has been modified so as to make it more efficient for incremental, online and open-
ended processes. A new method based on a genetic approach has been designed for 
optimizing various magic parameters of the SVDD. The genetic approach for 
optimizing parameters has previously been shown to improve the SVDD performance 
(Tavakkoli et al 2008). But the approach of Tavakkoli was not incremental. 
Incremental learning brings different challenges and the approach in this paper has 
been specifically designed for such learning processes. 

The rest of the paper is organized as follows. Next section describes the approach 
for social language transfer between the robot and its instructor. Section 3 details the 
learning and categorization methodology. Section 4 reports and discusses the 
experiments and the final section concludes the paper. 

2 Interaction Approach for Social Language Transfer 

Any two individuals (robots or humans) can share a language if they ground the same 
words to the same entities, regardless of their respective process of meaning 
formation. With this in mind, a social language scenario is designed where a human 
instructor teaches the robotic agent the names of the objects present in their visually 
shared environment. 

The robotic agent is embodied with a camera to visually perceive its world. 
This camera is mounted over a table which becomes a shared environment between a 
human instructor and the robot. The names taught by the instructor are grounded by 
the robotic agent in visual descriptions, leading to a vocabulary shared with its 
instructor.  
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Fig. 1. Robot’s visual scene and an extracted object as selected by the user. 

The instructor selects (by mouse-clicking on the visual scene) an object from the 
robot’s visible scene (Fig.1). The selected object is extracted from the visual scene 
and further processed to compute a set of shape features. The shape of the object in 
this implementation is expressed using the vector of normalized-radii features 
(described in Seabra Lopes and Chauhan 2007). This feature vector has previously 
been shown to be a robust shape descriptor and faithfully captures the shape of a 
segmented object, invariant to size, translation and rotation. Once the object has been 
extracted from the scene, the instructor can interact with the robot through the 
following instructions (using a menu-based interface): 
1. Teach the category name of the selected object; 
2. Ask the category name of the selected object; 
3. If the category predicted in the previous case is wrong, send a correction. 
4. Provide a category name and ask the robot to locate an instance of that category; 
5. If the object identified by the robot in the previous case does not belong to the 

requested category, provide the true category. 

The robot can respond to the human instructions in either of the following ways: 
1. Linguistic response: provide the classification results to the user; 
2. Visual response: visually report the results of a “search/locate” task. 

Simulated Instructor Agent. Teaching vocabulary to the robotic agent can be an 
extremely exhaustive task for the human user. Therefore, a simulated user has been 
developed for the purposes of the experiments reported in this paper. The actions of 
this agent are limited to the following actions of the human user: teaching, asking and 
correction. 

From many previous experiments a database of ~7000 images (from 69 categories) 
has been collected. The extracted object in Fig. 1 can give an idea of the type of 
images in this database. Most of these images (and their category names) were 
collected during a long duration experiment, where a human user followed a teaching 
protocol to teach the category names to the robotic agent (Seabra Lopes and Chauhan 
2008). 

3 Learning and Categorization 

This paper presents a novel methodology for category learning and classification 
based on the single-class SVDD (Tax 2001). For a given set X of positive examples, 
the SVDD approach tries to locate the data points xi (i.e. the support vectors) that 
form a closed description around the data. In a regular case, this approach will give a 
closed spherical description around all the data points. Tax showed that by mapping 
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the data points to a better feature space (by applying a kernel function K on the data), 
a much more robust and flexible data description can be achieved. Such a description 
is referred as a hypersphere. The optimization process used to determine the center 
and the support vectors attempts to minimize two errors: Empirical error – percentage 
of misclassified training samples; Structural error – radius Rh of the hypersphere 
which must be minimized with respect to the center a with certain constraints. Tax 
gives the final error L to be minimized as: 

i i j
i

L α K(x ,x )=∑  – i j i j
i, j

α α K(x ,x )∑  (1) 

with the following constraints on the Lagrange multipliers αi: 
i∀  10 ≤≤ iα ; 0≥iα , 1i

i

α =∑ ; and i i
i

a = α x∑  (2) 

Minimization of L with these constrains is a classic quadratic optimization 
problem. To find optimal support vectors many optimization approaches have been 
developed (e.g. SMO (Platt 1998) and the genetic approach of (Tavakkoli et al 
2008)). For the SVDD, the genetic approach of Tavakkoli et al led to a more robust 
and efficient optimization in comparison to other methods. However, their approach 
was neither incremental nor online. For an open-ended domain like vocabulary 
acquisition, a learning process needs to be incremental, online and open-ended. Such 
process requires continual assessment and updates of the support vectors when the 
new data gets introduced. The SVDD parameter optimization used in this paper is 
also based on using genetic algorithms, but the methodology has been designed to 
take the open-ended nature of vocabulary learning into account. 

An instance based approach has been used for category representations, where a 
category is described by a set of known instances belonging to that category. An 
instance is added to a category description when an instructor teaches the name of a 
selected instance (teaching actions) or provides a correction in case of an incorrect 
prediction by the robot (correction action). Each time a new instance is added to a 
category description a new chromosome is created with as many genes as the number 
of instances in the description. A new gene is also added to the existing 
chromosomes. These new genes contain a randomly chosen value of αi and all the 
existing genes are modified to be in the range listed in equation (2). In this 
implementation, the number of chromosomes is limited to 20, while there is no limit 
on the number of genes added. At any certain moment in time, the best chromosome 
for a category description is used as its Lagrange multipliers. Before describing the 
Lagrange parameter optimization, both the kernel function and the classification 
methodology have to be elaborated. 

Although the choice of kernel is data dependent, in most applications the Gaussian 
kernel produces good results (Tax 2001). This is also the choice for the experiments 
reported here. The kernel K used in this paper is defined as: 

),( ji xxK  =
1

exp N i j
2

( P (x ,x ))

σ

− −⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3) 

where xi and xj are the ith   and jth instances describing a category; σ is the standard 
deviation of the data; and PN (xi,xj) is the normalized pyramid match and is given as 
P(xi,xj)/Max_Match, where P(xi,xj) is the pyramid match (Grauman and Darrel 2007) 
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found on the feature vectors xi,and xj. The highest value (Max_Match) that a pyramid 
match can achieve on any two sets of equal sized features is the number of elements 
contained in a feature vector (in our case 40). 

Given an instance z to be classified, Tax (2001) describes its membership to a 
category C with the hypersphere radius Rh(C) as: 

2( , ) ( ( ))hD C z R C<  (4) 

where, D(C,z) = 1+
.

( , ) 2 ( , )i j i j i i
i j i

K x x K z xα α α−∑ ∑  

D(C,z) is the distance of the input instance z from the hypersphere center. If the 
distance is less than the squared radius of a category description, the instance is 
considered to belong to that category. To accommodate multiple category 
descriptions, the distance of instance z from the hypersphere boundary is calculated 
and the category description giving lowest boundary distance is predicted as the 
category of that instance. This boundary distance is given as: 

Bd(C,z) = (Rh(C))2- D(C,z) (5) 

 
// Cin is the input category description 
n = 1; //Chromosome index 
repeat { 

  i = 1; //Category index 
  fitness(crn) = 0; 
  repeat  { 
 xin = randomly chosen instance from Cin; 
 xi = randomly chosen instance from Ci; 
 if (Ci == Cin) continue; 

// Test whether using crn interferes with the recognition capacity  
// of existing categories 

 if (Bd(Ci, xi) > Bd(Cin, xi)) // No interference 
    fitness(crn) ← fitness(crn) + 0.5; 
else    fitness(crn) ← fitness(crn) - 0.5; 
// Test whether using crn improves the recognition capacity of  
// instances belonging to Cin 

 if (Bd(Cin, xin) > Bd(Ci, xin)) // Correct recognition 
    fitness(crn) ← fitness(crn) + 0.5; 
else    fitness(crn) ← fitness(crn) - 0.5; 

           i ← i + 1; 
  } until (i > number of categories) 
  fitness(crn) ← fitness(crn) / (total number of categories – 1); 

     n ← n + 1; 
} until (fitness(crn) > 95% OR all chromosomes have been evaluated) 
___________________________________________________________________________ 

Fig. 2. The core function to evaluate the fitness of a chromosome. 
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Fig. 3. The possible crossover and mutation capabilities of the system (the constraints 
mentioned in equation (2) are always maintained). Similar operations are carried out to 
optimize σ values. 

Given a category description, the optimization process attempts to iteratively 
evolve the set of chromosomes until the best chromosome has been found, without 
affecting the boundary descriptions of other category descriptions. In the current 
implementation the number of iterations used was 300 (usually the best solution was 
reached much earlier). Fig.2 describes the function designed to evaluate the fitness of 
the chromosomes for a given category. This function is called for each of the 
iterations. If no chromosome reached the desired fitness (85%) in a particular 
iteration, all the chromosomes are randomly mutated or crossed over (see the 
illustration in Fig.3). 

The key advantage of this strategy is that the optimization procedure, instead of 
minimizing the error L (equation (1)), tries to find the best set of Lagrange multipliers 
using the classification success of each chromosome while trying to maintain the 
classification performance over existing category descriptions. This makes the 
optimization process feasible for incremental, online, open-ended and multiple 
category scenarios. 

4 Experimental Evaluation 

Experiments were conducted to evaluate the performance of the new learning system 
on vocabulary acquisition using an experimental protocol. This protocol (“teaching 
protocol” (Seabra Lopes and Chauhan 2007)) is generic enough to be applied to any 
incremental and open-ended class learning domain. An instructor, following this 
protocol, performs either “teach”, “ask” or “correct” actions. As the protocol 
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progresses, the robot accumulates new words. The protocol dictates that, at the 
introduction of a new category, the recognition performance over the previously 
learned categories should be tested and the next category should be introduced only 
when the performance of the overall learning system is above a set threshold (66.67% 
for reported experiments). The classification precision measure (computed over a 
fixed number of most recent question-correction iterations) is used to analyze the 
impact of a new category on the learning system, from initial instability to final 
recovery in system's performance. An experiment is concluded when the robot is 
unable to recover from the initial instability at the introduction of a new class (i.e. 
when the breakpoint is reached). One more evaluation measure – overall system 
precision, calculated as an average over all the classification precision values for all 
the question-correction iterations - has been used to evaluate the overall performance 
of the system. 

Table 1. Summary of experiments. 

Exp # # cats at 
breakpoint 

# Question 
/correction 
iterations 

Class. 
precision at 
breakpoint 

(%) 

# Avg. 
instances       

per category 
at breakpoint 

System precision 
before the 

introduction of the 
last category 

(%) 

1 33 1519 62 17.8 71 

2 20 1036 60 20.8 63 

3 29 1349 58 18.6 70 

4 29 1621 60 22 66 

5 27 1246 53 18.3 65 

 
Fig. 4. Evolution of classification precision versus number of question/correction interactions 
in the third experiment. 

Experiments were conducted using the simulated instructor agent.  For each 
new/learned category, the instructor randomly selects an instance of that category 
from the image database, preserving the essence of natural interactions. When all the 
images of particular category have been used or if all the categories in the database 
have been exhausted, the human user is called to show a new image or to introduce a 
new category. 

In total 5 experiments were conducted, where the robot was able to learn 
somewhere between 19-32 categories. Table 1 provides a summary of these 
experiments when the breakpoint was reached. The last column of Table 1 gives the 
overall system precision over the question/correction iterations right before the final 
category was introduced. Thus the system precision is used here to show the 
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performance of the learning methodology over the set of categories that were 
successfully learned. 

Fig.4 illustrates the evolution of classification precision in the third experiment. In 
this experiment, the robot learned 28 categories (and category names). In general, the 
introduction of a new category to the agent led to the deterioration in classification 
precision followed by gradual recovery. Each such introduction can affect the 
classification performance over other categories, since any new data can lead to the 
confusion between different boundary descriptions. The depressions in the graph 
normally indicate the period after the introduction of a new category. At each 
misclassification on any learned category, the optimization process is carried out to 
derive the fittest chromosome. This leads to a gradual system recovery, eventually 
improving the complete system performance. This process continues until the system 
starts to confuse the category descriptions to an extent that it can no longer recover. 
For an example, on the introduction of 29th category in experiment 3, the precision 
remained around 57% (for ~500 iterations) without showing signs of recovery. All the 
reported experiments showed similar classification precision evolution pattern. 

5 Conclusions 

This paper presented a novel approach to grounding vocabulary in robotic systems. 
This approach is inspired by the studies on grounding vocabulary through social 
interactions. A scenario has been designed where a human instructor can teach the 
robot the names of objects present in their visual environment. The robot grounds 
these words in its visual-sensor based descriptions. 

The key contribution of this paper has been the use of single-class SVDD for 
vocabulary learning. The SVDD has been modified so as to be able to function in 
incremental, online, open-ended and multiple category scenarios. A novel genetic 
approach has been designed that modifies the optimization criteria of the SVDD. 
Instead of considering the optimization of Lagrange parameters as a quadratic 
optimization problem, the new approach tries to optimize these multipliers based on 
the classification success of a category on its own instances. The fitness function has 
been designed to maximize self categorization, without affecting the existing category 
descriptions. 

The robot was able to incrementally learn between 19 and 32 categories in 5 
different experiments. The evolution process of the classification precision in 
different experiments clearly shows that the proposed strategy is capable of 
incremental learning in open-ended scenarios. On the other hand, the number of 
categories learned was very limited. We believe, however, that the approach is 
promising. There are perhaps many areas where improvements can be made. But the 
fitness strategy itself will be the key to better performance. Future work will primarily 
entail refining the optimization process by investigating more robust fitness functions, 
while maintaining the optimization criteria. 
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