References
1. Barsalou, L. 1999. Perceptual symbol systems. Behavioral and Brain Sciences, 22(4):
577–609.
2.
Bloom, P. 2000. How Children Learn the Meanings of Words. MIT Press, Cambridge, MA.
3.
Cowley, S. J. 2007. Distributed language: Biomechanics, functions and the origins of talk.
In Lyon, Nehaniv & Cangelosi (eds), Emergence of communication and language, 105-127.
4.
Gold, K.; Doniec, M.; Christopher, C.; and Scassellati, B. 2009. Robotic Vocabulary
Building Using Extension Inference and Implicit Contrast. Artificial Intelligence
173(1):145-166.
5.
Harnad, S. 1990. The symbol grounding problem. Physica D, 42:335-346.
6.
Grauman, K.; and Darrell, T. 2007:The Pyramid Match Kernel: Efficient Learning with
Sets of Features. Journal of Machine Learning Research (JMLR), 8 (Apr): 725-760.
7.
Levinson, S. E.; Squire, K.; Lin, R. S.; and McClain, M. 2005. Automatic language
acquisition by an autonomous robot, Proc. of AAAI Spring Symposium on Developmental
Robotics.
8.
Loreto, V.; and Steels, L. 2008. Social dynamics: Emergence of language. Nature Physics,
3:758-760
9.
Love, N. 2004. Cognition and the language myth. Language Sciences, 26:525-544.
10.
Markman, E.S. (1989) Categorization and naming in children. Cambridge, MA: MIT Press.
11.
Platt, J. 1998. Sequential minimal optimization: A fast algorithm for training support vector
machines. Microsoft Research Technical Report MSR-TR-98-14.
12.
Roy, D.; and Pentland, A. 2002. Learning words from sights and sounds: A computational
model. Cognitive Science, 26:113-146.
13.
Seabra Lopes, L.; and Chauhan, A. 2007. How many Words can my Robot learn? An
Approach and Experiments with One-Class Learning. Interaction Studies, 8(1):53-81.
14.
Seabra Lopes, L.; and Chauhan, A. 2008. Open-ended category learning for language
acquisition. Connection Science, 20(4):277-297.
15.
Skocaj, D.; Berginc, G.; Ridge, B.; Štimec, B.; Jogan, M.; Vanek, O.; Leonardis, A.;
Hutter, M.; and Hewes, N. 2007. A system for continuous learning of visual concepts,” In
International Conference on Computer Vision Systems ICVS 2007, Bielefeld, Germany.
16.
Steels, L. 2007. The symbol grounding problem is solved, so what's next? In De Vega, M.
and G. Glennberg and G. Graesser (eds), Symbols, embodiment and meaning. Academic
Press, New Haven.
17.
Steels, L.; and Kaplan, F. 2002. AIBO’s first words: The social learning of language and
meaning. Evolution of Communication, 4(1):3-32.
18.
Tavakkoli, A.; Nicolescu, M.; Bebis, G.; and Nicolescu, M. 2008. A support vector data
description approach for background modeling in videos with quasi-stationary
backgrounds", International Journal of Artificial Intelligence Tools, 17(4):635-658.
19.
Tax, D. M. J. 2001. One Class Classification. PhD Thesis, Delft University of Technology
78