
A FRAMEWORK FOR PROACTIVE SLA NEGOTIATION

Khaled Mahbub and George Spanoudakis
Department of Computing, City University London, Northampton Square, London EC1V 0HB, U.K.

Keywords: Service Discovery, Service Level Agreements, Proactive SLA Negotiation, Service Monitoring.

Abstract: In this position paper we propose a framework for proactive SLA negotiation that integrates this process
with dynamic service discovery and, hence, can provide integrated runtime support for both these key
activities which are necessary in order to achieve the runtime operation of service based systems with
minimised interruptions. More specifically, our framework discovers candidate constituent services for a
composite service, establishes an agreed but not enforced SLA and a period during which this pre-
agreement can be activated should this become necessary.

1 INTRODUCTION

A service level agreement (SLA) is an explicit
contract between the provider and the consumers of
a service that defines the quality and, sometimes,
functional properties which should be guaranteed
during the provision of the service, as well as the
penalties that should be applied in case of defaulting
(Wieder, et al., 2008). An SLA is set through a
negotiation process between the provider and the
consumer of a service. This process is particularly
complex in the case of composite services since, in
order to ensure that the provision of a composite
service S is in line with the SLAs required by its
clients, the provider of S should also negotiate and
establish subordinate SLAs with the providers of the
constituent services of S. Furthermore, when a
constituent service of S becomes unavailable at
runtime or fails to perform according to its SLA, the
provider of S should be able to discover alternative
replacement services for it and negotiate SLAs with
them at runtime.

As it has been suggested by Zisman, et al.
(2008), to minimise the runtime interruption in the
provision of composite services, the discovery of
back up replacement services for their constituents
should be proactive, i.e., it should be performed
before a constituent service of S becomes
unavailable or fails to perform according to its
established SLA. Proactiveness is important since
service discovery is a time consuming activity and,
therefore, carrying it in a reactive mode, is likely to
cause significant interruption in the provision of the

composite service and violations of its own SLAs.
SLA negotiation should also be proactive as it will
be necessary to have adequate SLAs for the potential
replacement services that have been identified by
proactive discovery attempting SLA negotiation just
prior to binding to an alternative service is likely to
cause significant delay.

Existing work on service level agreements has
focused on SLA specification (Kritikos and Pernici,
2009), negotiation (Dumitrescu and Foster, 2005)
and monitoring (Mahbub and Spanoudakis, 2007;
Raimondi, et al., 2007). The need for runtime SLA
negotiation or re-negotiation has been realised by Di
Modica, et al. (2007); Parkin, et al. (2008);
Sakellariou and Yarmolenko (2005) and He, et al.
(2009), where either the terms of an SLA are revised
to accept service from an existing provider (Di
Modica, et al., 2007; Sakellariou and Yarmolenko,
2005) or a new SLA is negotiated with a new service
provider and an existing SLA is terminated (Parkin,
et al., 2008). All these approaches, however, are
reactive as they support corrective actions only after
an SLA has been violated. Thus, they may fail to
guarantee uninterrupted runtime provision of
composite services.

To address this shortcoming, in this position
paper we introduce an approach for proactive
runtime SLA negotiation. Our approach is based on
an extension of a tool for proactive runtime service
discovery which is described by Zisman, et al.
(2008). Our approach weaves SLA negotiation into
runtime service discovery and provides a clear
process model for carrying these two activities in a

251
Mahbub K. and Spanoudakis G. (2010).
A FRAMEWORK FOR PROACTIVE SLA NEGOTIATION.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 251-256
DOI: 10.5220/0003040902510256
Copyright c© SciTePress

coordinated manner. It also extends a language for
expressing runtime service discovery queries that
has been developed by Zisman, et al. (2008) to
enable the specification of SLA negotiation criteria
using it. Thus, our approach provides integrated
runtime support for both proactive service discovery
and SLA negotiation that enables provision of
composite service with minimised interruptions.

Proactive SLA negotiation is weaved into the
discovery process and is performed after the
execution of service discovery queries to ensure that
adequate SLAs can be set for the discovered
services. The objective of proactive negotiation is to
establish an agreed but not enforced SLA and a
period during which the consumer of the service will
be able to activate the pre-agreement should this
become necessary. The negotiation process is also
repeated when a pre-agreed SLA comes close to
expiry and, therefore, it has to be renegotiated.

The rest of this paper is structured as follows. In
Section 2, we discuss the architecture of the
framework for proactive runtime service discovery
and SLA negotiation. In Section 3, we describe the
negotiation process. In Section 4, we briefly present
the negotaiton mechanism used in the farmewrok. In
Section 5, we review related work and finally in
Section 6, we provide some concluding remarks and
outline directions for future work.

2 PROACTIVE SERVICE
DISCOVERY AND SLA
NEGOTIATION FRAMEWORK

The architecture of our integrated service discovery
and SLA negotiation framework is shown in Figure
1. The framework consists of a runtime service
discovery tool, a service listener, a proxy negotiation
broker and a monitor, and interacts with external
service registries and event captors.

The runtime service discovery tool is used to
identify potential alternative services for the services
that a composite service uses currently. The
discovery process is driven by service discovery
queries. These queries are associated with each of
the constituent services Sc of the composite service S
and specify the conditions that should be satisfied by
any service that could replace Sc’s in the
composition. These conditions can refer to the
structural (interface), behavioural, contextual, and
quality characteristics that services should have in
order to be acceptable replacements for Sc. Service
discovery queries can be executed in two modes: (a)

in a reactive mode where the query is executed when
the constituent service Sc that it is associated with
becomes unavailable or fails to satisfy an agreed
SLA and, therefore, a replacement service should be
identified, or (b) in a proactive mode where the
query is executed in parallel with the operation of
the composite service S in order to discover and
maintain a set of candidate replacement services for
it. In the proactive execution mode, the query is
executed initially to build a set of replacement
services for S (RS) and then anytime when an event
indicating that the description of some service in RS
has been changed or a new service that could be a
candidate for inclusion in RS has emerged.

Figure 1: Architecture for proactive (and reactive) SLA
negotiation.

The proxy negotiation broker is the component that
manages the negotiation process on behalf of a
service consumer (i.e., the composite service) or a
service provider. Our architecture assumes that a
separate instance of this component is associated
with each of the two sides (the service provider and
consumer). The structure of proxy negotiation
broker is described in more detail in Section 2.1. The
negotiation process can be either reactive or
proactive. In proactive negotiation, the negotiation
process is carried out according to a two-phase
protocol that may result in a provisionally agreed
SLA but not activated SLA (see “Pre-agreed SLA”
in Figure 1) or negotiation failure. In reactive
negotiation, the negotiation process is executed
according to a single phase protocol that can result
in an agreed and activated SLA (see “Active SLA”
in Figure 1) or negotiation failure. In the framework,
a pre-agreed SLA describes a service level

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

252

agreement that has been reached but not activated
yet. A pre-agreed SLA has an expiry period within
which it becomes active, if the consumer of the
service decides to activate it.

The service registry contains descriptions of
services. These should include at least a
specification of the interface of the service (WSDL)
and SLA templates indicating the terms (e.g. service
quality levels, costs etc) under which the provider of
service is typically willing to provide it. Additional
types of service descriptions that are supported by
the framework are models of service behavior
(expressed in BPEL) and further quality
characteristics that complement the SLA templates
by specifying the entire range of values for a given
characteristic.

The service listener contacts service registries
regularly to identify changes in existing service
descriptions or new services that might have become
available.

The monitor in the architecture of Figure 1 is
responsible for monitoring the provision of a service
by a given provider and the use of it by a set of
service consumers. The monitor is used to detect if
the SLA guarantee terms which should apply to the
provision of the service are satisfied, and whether
the conditions of the negotiation triggering rules of
the relevant party are satisfied in order to generate
signals for triggering negotiation.

If monitor detects (or forecasts) that the
conditions of negotiation triggering rules in the
negotiation policy of a service provider or consumer
are (or will be) violated, it informs the relevant
negotiation broker to initiate a negotiation or
renegotiation. The checks performed by the monitors
take into account events that are intercepted during
the use of services (e.g. service invocations and
responses). These events are notified to the
framework by different types of event captors that
may be associated with different services (e.g.
SOAP message captors). These events are notified to
the monitor for verifying the adherence of services
to different SLA guarantee terms and checking
whether some SLA negotiation activity should be
initiated.

The circumstances under which the negotiation
of new SLAs should start are determined by
negotiation triggering rules (e.g., when a
provisionally agreed SLA is about to expire).
Service providers and consumers may specify
separate sets of such rules, which come to force and
get monitored after the SLA is established.

2.1 Proxy Negotiation Broker

Figure 2, shows the structure of the proxy
negotiation broker. The broker deploys suitable
Negotiation Engines that are responsible for
negotiating and agreeing the guarantee terms of an
SLA. The broker wraps different types of
negotiation engines (e.g. rule driven negotiation
engine or linear programming based negotiation
engine) and provides a common interface to access
its functionalities. The Specification Translator is
responsible for generating specifications that are
necessary for the negotiation engine to conduct the
negotiation process.

Figure 2: Proxy negotiation broker and its components.

Figure 3 shows the interface of the proxy negotiation
broker. This interface offers the following methods,
 SetupNegotiation: This method allows the

service discovery process to initialize the
negotiation broker for the negotiation process.
This method accepts four parameters. The first
parameter is the string representation of an
XML document that contains the negotiation
rules. The XML document is written according
to the negotiation rule specification schema of
our framework (Mahbub and Spanoudakis,
2010). The specification translator transforms
these negotiation rules into a form that is
understood by the deployed negotiation engine.
The second parameter specifies the type of
negotiation engine that should be used in the
negotiation process (e.g. rule based or linear
programming based). The third parameter
specifies the ID of the service consumer that the
negotiation broker is negotiating for and the
fourth parameter specifies the ID of the
negotiation broker that this negotiation broker is
negotiating with. This method returns a unique
ID for the negotiation process.

 StartNegotiation: This method is used by the
service discovery process to start the negotiation
process. This method accepts one parameter that
specifies the unique ID of the negotiation
process.

 SetOffers: The Proxy Negotiation Broker uses
this method to set the offers produced by the
negotiation engine to its counterpart, i.e., the

A FRAMEWORK FOR PROACTIVE SLA NEGOTIATION

253

negotiation broker on the other side that this
negotiation broker is negotiating with. This
method accepts one parameter, which is the
string representation of an XML document that
contains an SLA template. The XML document
is written according to the SLA specification
schema of our framework (Mahbub and
Spanoudakis, 2010).

Figure 3: Interface of proxy negotiation broker.

3 SLA NEGOTIATION PROCESS

The UML activity diagram shown in Figure 4
presents the service discovery process of the
framework with the activity of SLA negotiation
embedded within it. The process starts with the
submission of a service discovery query by the
composite service (i.e., the consumer of constituent
services). As discussed in Section 2, this query can
specify different service discovery criteria, namely:
(a) structural criteria describing the interface of
required services, (b) behavioural criteria describing
the functionality of required services, and (c)
constraints describing quality characteristics of
required service. The initial execution of the service
discovery query (see the action state Execute Query
in Figure 4) results in a list of potential candidate
services (RS). The candidate services are identified
by evaluating the structural, behavioural and quality
characteristics specified in a query against the
structural, behavioural and quality of service
specifications in service registries. The execution of
the discovery query also computes distances
between a query and candidate services based on the
query criteria and ranks the candidate services based
on their distances to the query. The list of potential
candidate services is updated by executing the
service discovery query when the framework is
informed via the service listener that a new service
has become available in a registry or the description
of an existing service has been modified (see the
signal accept state New/Amended Service
Description in Figure 4). This ensures that new or
updated services are considered by the process.

After an initial set of candidate services has been
built or updated (see the action state Create/Update
Candidate Service Set), the framework selects a
service that does not have a negotiated SLA from RS

for negotiation (see the transition guarded by the
condition Exists Service in RS without Negotiated
SLA).

In the negotiation phase (i.e., the action state
Negotiate SLA), the desired level of service is
negotiated with the selected candidate service. In
this phase, the QoS characteristics of each candidate
service are negotiated in order to achieve the best
possible SLA for the services. Negotiation during
this phase may fail and, if this happens, for a
selected candidate service then the service is
removed from RS and a new negotiation will start
with another candidate service in RS which does not
have a negotiated SLA. If the negotiation with a
selected service succeeds, a provisional SLA is
established and the selected service in RS is updated
to flag the existence of the pre-agreed SLA.

Figure 4: SLA negotiation process.

It should be noted that, the negotiated SLAs for the
services in RS do not come into force immediately.
For each pre-agreed SLA, the negotiation process
establishes a time period over which the pre-agreed
SLA can be automatically brought into force without
further negotiation. This will happen if the relevant
service is selected for binding to the composite
service. If the validity period of a pre-agreed SLA
comes close to expiry without the candidate service
being bound to the composite service, the
framework will proactively re-negotiate the SLA
(see the transition guarded by the condition Pre-
agreed SLA about to expire, from the action state
Create/Update Candidate Service Set to the action
state Select Service RS for Negotiation).

Following the selection of a service in RS for
binding at runtime, its SLA is automatically
enforced (see the action state Activate SLA in Figure
4). When an SLA comes into force, its guarantee

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

254

terms become subject of monitoring (see the action
states Receive SLA and Service & SLA Monitoring in
Figure 4). If the monitoring process detects violation
of the SLA or the deployed service becomes
unavailable then the service is replaced by the best
available service in RS (see the transition from the
action state Service & SLA Monitoring to the action
state Select & Bind Best Service in RS). The
detection of violation of the conditions in
negotiation triggering rules (e.g. active SLA about to
expire) triggers the negotiation phase to establish a
new SLA.

4 NEGOTIATION MECHANISM

Although, as discussed in Section 2, our framework
supports the deployment of different types of
negotiation engines, we use a linear programming
based negotiation engine as the default. This is
because linear programming enables relatively quick
optimal solution in decision making (Megiddo
1987). Despite this advantage, the use of linear
programming techniques in the context of SLA
negotiation has received limited attention, and the
few approaches that apply linear programming for
SLA management have certain limitations. For
example, Hung (2003) assumed that participating
parties expose their preferences over the negotiation
issues in order to formulate the linear program. In
reality, however, participants might not be willing to
disclose information about their own preferences.
Cradellini, et al. (2007) used linear programming to
set and tune the provision of an agreed SLA rather
than in SLA negotiation.

In our framework, each participant expresses its
preferences over negotiation issues by a set of
negotiation rules. The proxy negotiation broker
transforms the negotiation rules into a linear
program and solves it to generate SLA offers during
the negotiation process. A negotiation rule in our
framework has the generic structure:

IF (condition) THEN (action) ELSE (action)
Conditions in these rules are expressed as atomic
conditions over quality attributes of services or
logical combinations of atomic conditions. Rule
actions can be of three types: (i) accept actions
which enable the acceptance of the value of one or
more attributes in a given SLA offer, (ii) reject
actions which enable the rejection of the value of
one or more QoS attributes in a given SLA offer,
and (iii) set actions which allow to define a new

value or range of values for one or more QoS
attribute.

Negotiation rules are transformed into linear
inequalities applying the techniques discussed by
Nielsen, et al. (2000); Costa and Monteiro (2003).
For example, a negotiation rule of the form,

IF (p > 0) THEN (q >=0)
can be transformed into the following set of
inequalities,

where, B is a binary variable and C1, C2, C3 are
constants whose values should be large enough.

5 RELATED WORK

There is a substantial amount of work related to SLA
negotiation. The parts of it that are more relevant to
our approach relate to runtime negotiation and
management of compensations for SLA violations.

The provision of compensation in case of
violation of SLA is argued by Rana, et al. (2007)
and He, et al. (2009). These approaches claim that
the penalty clauses in the SLA should not only
specify the monetary penalties or impact on potential
future agreements between the parties but also
several other issues such the law that will be applied
in cases where a conflict between the provider and
the client arise, and the impact of the penalty clauses
on the choice of service level objectives.

Runtime renegotiation is suggested by Wieder, et
al. (2008); Sakellariou and Yarmolenko (2005); Di
Modica, et al. (2007) and Parkin, et al. (2008), to
manage SLA violations. Service level objectives are
revised and renegotiated at runtime and the deployed
service is adjusted to the newly agreed service level
objectives by Di Modica, et al. (2007). A similar
approach which allows changes in service level
objectives whilst keeping an existing SLA is
described by Sakellariou and Yarmolenko (2005).
Parkin, et al. (2008) described a renegotiation
protocol that allows the service consumer or service
provider to initiate renegotiation while the existing
SLA is still in forced. In this protocol any party may
initiate the renegotiation and after a successful
renegotiation the existing SLA is superseded by a
new contract.

The approaches discussed above are reactive in
nature, i.e., renegotiation starts only after an existing
SLA is violated. The outcome of renegotiation is
either a revised set of service level objectives

0 < P + C1*B
0 <= Q + C2*B
P <= 0 + C3*(1-B)

A FRAMEWORK FOR PROACTIVE SLA NEGOTIATION

255

allowing the acceptance of a service from an
existing provider or a new SLA for a new service
provider terminating the existing SLA. Hence, all
these approaches either affect the quality of the
delivered service or fail to guarantee uninterrupted
service. Unlike them, our approach weaves proactive
SLA negotiation into dynamic service discovery to
enable the runtime operation of service based
applications with minimised interruptions.

6 CONCLUSIONS AND FUTURE
WORK

This position paper proposes a framework that
integrates service discovery, monitoring and
proactive SLA negotiation. The service discovery
process is used by service consumers (i.e., service
based applications) in order to identify potential
alternative services for the services that they
currently use. The framework supports the proactive
negotiation of SLAs with each alternative service
prior to its deployment. The negotiation process is
carried out according to a two-phase protocol that
may result in a provisionally agreed SLA but not
activated SLA or negotiation failure. A provisional
SLA is a service level agreement that has been
agreed by a service provider and a service consumer
but has not been activated yet. Such an SLA has an
expiry date by which it will either be activated or
cease to exist.

The presented framework has also opened broad
scope of future investigations. For example the
framework can be extended to support proactive
negotiation for hierarchical SLA i.e. a complex SLA
can be decomposed into several SLAs and
negotiated separately to come to a final agreement.
Also the framework can be extended to support
dynamic adaptation of the negotiation rules, i.e. the
participants will be able to dynamically change the
negotiation rules during the negotiation process.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the European Community’s Seventh
Framework Programme [FP7/2007-2013] under
Grant Agreement 215483 (S-Cube).

REFERENCES

Cardellini V., Casalicchio E., Grassi V., Lo Presti F.,

2007. Efficient provisioning of service level agreements
for service oriented applications. In Proceedings of
IW-SOSWE at ESEC/FSE.

Costa J. C., Moneiro J. C., 2003. Input Generation for Path
Coverage in Software Testing. IEEE Workshop on
Compilers and Tools for Constrained Embedded
Systems

Di Modica G., Tomarhio O. and Lorenzo V., 2007. A
framework for the management of dynamic SLAs in
composite service scenarios. ICSOC Int. Workshops,

Dumitrescu C. L., Foster I., 2005. GRUBER: A Grid
Resource Usage SLA Broker. Int. Euro-Par
conference.

He Q., Yan, J., Kowalczyk R., Hai J., Yang Y., 2009.
Lifetime Service Level Agreement Management with
Autonomous Agents for Services Provision.
Information Sciences, Elsevier.

Hung P. C. K., 2003. A Primitive Study of Logrolling in e-
Negotiation. 36thHawaii Int. Conf. on System Sciences

Kritikos K., Pernici B., (editors), 2009. Initial Concepts
for Specifying End-to-End Quality Characteristics and
Negotiating SLAs. S-Cube project deliverable: CD-
JRA-1.3.3. http://www.s-cube-
network.eu/achievements-results/s-cube-deliverables.

Mahbub K., Spanoudakis G., 2007. Monitoring WS
Agreements: An Event Calculus Based Approach, Test
and Analysis of Service Oriented Systems, (eds) L.
Baresi, E. diNitto, Springer.

Megiddo N., 1987. On the complexity of linear
programming. In Advances in economic theory Fifth
world congress, Cambridge University Press

Nielsen S. R., Pisinger D., Marquardsen P., 2000.
Automatic Transformation of Constraint Satisfaction
Problems to Integer Linear Form - an Experimental
Study. In Proc. of Techniques foR Implementing
Constraint programming Systems,

Parkin M., Hasselmeyer P., Koller B., Wieder P., 2008.
An SLA Re-negotiation Protocol. In proceedings of
the 2nd Workshop on Non Functional Properties and
SLAs in Service Oriented Computing

Raimondi, F., Skene, J., Chen L., Emmerich, W., 2007.
Efficient monitoring of web service SLAs. Technical
report. Research Notes (RN/07/01). UCL, London,.

Rana O., Warnier M., Quillinan T. B., Brazier F. and
Cojocarasu D., 2007. Managing Violations in Service
Level Agreements. In Proceedings of the Usage of
Service Level Agreements in Grids Workshop.

Sakellariou R., Yarmolenko V., 2005. On the Flexibility
of WS-Agreement for Job Submission. Proc. of 3rd
Int. Workshop on Middleware for Grid Computing,

Mahbub K, Spanoudakis G., 2010. SLA Specifications.
http://www.soi.city.ac.uk/~am697/sla/SLA-Spec.zip

Wieder P., Seidel J., Wäldrich O., Ziegler W., Yahyapour
R., 2008. Using SLA for Resource Management and
Scheduling - A Survey. Grid Middleware and Services
Challenges and Solutions, Springer.

Zisman A., Spanoudakis G., Dooley J., 2008. A
Framework for Dynamic Service Discovery. 23rd Int.
Conf. on Automated Software Engineering.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

256

