
Table 1: O-D matrix between the regions.
A B C
A 9397 5282 5213 19892
B 25118 8272 5065 38455
C 22570 8732 1134 32436
57085 22286 11412 90783
Figure 2: Red topology.
We have to consider the estimated subzones
exponents’ vectors
[
D
C AAMAMMMMAB=
,
[
o
CAMMAMMAMAB=
and the exponents matrix,
D
M A M M M MA MB
BMM BM BMB
AMBBBMMB
MB MMMM B
C
MBM MMMMB
MB AM MMMB
AMMAA A A B
AM A A M A MA
B B MB MB MB MB MB M
⎡⎤
⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎢⎥
=
⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎢⎥
⎣⎦
After, applying the proposed algorithm, we
obtain the following matrix OD,
Table 2: Resulting O-D matrix using the proposed
algorithm.
0 2945.4 1142.1 1667.2 433.1 575.7 486.1 4203.5 85.9
2051.3 0 381.6 557.1 289.4 192.4 324.9 351.2 28.7
1467.9 1408.6 0 398.7 103.6 137.7 116.2 502.6 41.1
2036.9 1954.6 757.9 0 295.3 392.6 331.5 872.9 142.7
1978.7 1898.8 736.3 552.2 0 381.3 322 847.9 69.3
1853.7 1778.8 689.8 1034.6 268.7 0 301.7 794.4 64.9
4903.1 4705 1824.4 2736.4 710.8 944.9 0 2101.1 171.8
8445.1 8104 3142.4 3292.4 1710.5 1136.9 1920 0 783.6
1234.6 1184.7 459.4 240.6 125 166.2 140.3 350.4 0
Which is compared to the original test matrix
Table 3: Original test matrix.
0 2585 1155 920 543 460 485 3247 211
1769 0 653 510 322 306 353 538 151
1704 1531 0 519 302 267 295 901 165
2282 2194 1012 0 465 401 440 844 231
1972 1935 832 687 0 441 496 828 179
2049 2064 946 778 519 0 598 789 212
3953 4127 1752 1554 1009 884 0 1557 425
7308 7405 3766 3018 1617 1398 1556 0 805
1447 1440 1204 343 263 264 263 329 0
We can see that the results for the dominant
values of the matrix are approximated; obviously the
errors are due to the uncertain information coming
from the expert, but still much lower than using the
approximation for maximum entropy.
Table 4: Resulting O-D matrix using the maximum
entropy method.
0 1181.2 1228.4 526.2 353.4 438.1 351.4 2011.1 540.3
2153.9 0 1183.9 507.2 681.1 422.2 677.4 484.6 520.8
1774.2 1875.5 0 417.8 280.5 347.8 279 798.3 857.9
1915.8 2025.2 2106.1 0 593.9 736.3 590.7 522.6 1123.2
2069.3 2187.5 2274.9 477.7 0 795.3 638 564.4 606.6
2001.9 2116.2 2200.7 924.2 620.6 0 617.2 546 586.8
1970.7 2083.2 2166.4 909.8 610.9 757.4 0 537.5 577.7
3243.1 3428.3 3565.2 1129.6 1517.1 940.4 1508.8 0 885.8
3907.4 4130.5 4295.4 680.5 913.9 1133 908.9 248.2 0
Making a comparison of the percentage of the
errors of both methods shows that the method of the
proposed algorithm presents a certain amount of
errors lower than the highest entropy method.
Hereunder is the matrix that arises from the
proposed algorithm.
Table 5: Percentage errors using the proposed algorithm.
-13,94 1,12 -81,22 20,24 -25,15 -0,23 -29,46 59,29
-15,96 41,56 -9,24 10,12 37,12 7,96 34,72 80,99
13,86 7,99 23,18 65,70 48,43 60,61 44,22 75,09
10,74 10,91 25,11 36,49 2,09 24,66 -3,42 38,23
-0,34 1,87 11,50 19,62 13,54 35,08 -2,40 61,28
9,53 13,82 27,08 -32,98 48,23 49,55 -0,68 69,39
-24,03 -14,01 -4,13 -76,09 29,55 -6,89 -34,95 59,58
-15,56 -9,44 16,56 -9,09 -5,78 18,68 -23,39 2,66
14,68 17,73 61,84 29,85 52,47 37,05 46,65 -6,50
Meanwhile the matrix that arises from the
highest entropy method provides higher percentage
errors in some cells, even 100 to 200 percent.
Table 6: Percentage errors using the maximum entropy
method.
54,31 -6,35 42,80 34,92 4,76 27,55 38,06 -156,07
-21,76 -81,30 0,55 -111,52 -37,97 -91,90 9,93 -244,90
-4,12 -22,50 19,50 7,12 -30,26 5,42 11,40 -419,94
16,05 7,69 -108,11 -27,72 -83,62 -34,25 38,08 -386,23
-4,93 -13,05 -173,43 30,47 -80,34 -28,63 31,84 -238,88
2,30 -2,53 -132,63 -18,79 -19,58 -3,21 30,80 -176,79
50,15 49,52 -23,65 41,45 39,45 14,32 65,48 -35,93
55,62 53,70 5,33 62,57 6,18 32,73 3,03 -10,04
-170,03 -186,84 -256,76 -98,40 -247,49 -329,17 -245,59 24,56
ICFC 2010 - International Conference on Fuzzy Computation
128