Table 1: Estimated and optimal quantum lengths for several sets of services times of the ten jobs in the ready queue.
Quantum
length (q
es
)
Quantum
length(q)
Job10
S
t
10
Job9
S
t
9
Job8
S
t
8
Job7
S
t
7
Job6
S
t
6
Job5
S
t
5
Job4
S
t
4
Job3
S
t
3
Job2
S
t
2
Job1
S
t
1
4.9932
5
5.0001.9004.2008.1008.3004.5009.6003.9005.8004.100
3.8118
4.7
3.5002.5004.0001.0001.0006.4009.3004.6002.2003.800
3.0065
2.9
4.7005.1000.1009.6008.1001.4009.70010.0002.0002.900
4.5457
4.9
8.5007.7004.8006.9001.7003.3009.3000.8002.8009.700
4.0042
3.2
7.5009.0002.8006.3007.8003.1008.6007.2002.9006.000
3.971
4.0
3.9009.0008.9001.8008.0005.3002.8005.9007.8008.000
3.4346
3.7
3.7008.6002.6003.4001.1004.8006.30010.0007.1005.300
3.1378
3.1
3.1002.7007.9005.7005.8005.5007.7008.5005.8005.900
3.8003
2.1
5.6000.8007.9008.8001.6004.1005.8006.2006.7008.600
3.8491
4.3
0.3008.7006.7006.1008.2006.3009.3004.3001.0007.700
4.0545
4.0
3.5003.9008.6009.4001.4005.6005.2006.7002.2004.000
2.1449
2.1
1.1005.3003.6002.1001.4006.0006.1005.6008.5005.000
3.5606
3.3
2.7008.0004.0005.6004.7009.6000.2006.6006.5002.600
3.7999
4.6
8.7005.1006.9006.7000.9006.0000.2001.9004.6007.100
2.4572
0.5
0.4004.3006.3009.0008.4001.4000.4003.0007.3000.300
3.3133
4.2
5.8005.7004.2000.8001.4002.0000.2000.3001.9002.600
1.1836
1.3
4.5003.8001.3000.3001.1005.2007.1008.2006.0001.900
4.1698
4.3
1.6005.3002.9005.3004.3004.2000.9005.4004.2005.100
4.6203
4.9
8.6005.5000.4007.5004.8002.0006.2004.9004.5002.200
4.9653
4.6
0.6004.6002.7003.6008.0002.3001.0003.6004.6003.200
3.4902
3.7
6.7002.1003.7003.2004.8005.5005.8006.7009.8007.100
2.5514
2.3
9.0002.1003.5000.1001.4001.5005.5001.8009.7004.400
3.0072
2.9
2.7000.4001.0008.1009.8009.1005.3002.9008.0001.600
3.2077
2.8
1.4005.0004.8005.1009.1008.7005.6007.2007.4004.900
4.1322
4.1
9.6005.1008.7004.1001.0009.2006.7008.1006.1001.800
4.8429
4.9
8.5005.7004.2004.4001.5009.6004.3004.8007.6001.800
4.677
4.9
7.4004.9007.0006.0005.7008.8004.3008.2004.2007.100
REFERENCES
Amotz, B., Vladimir, D., and Boaz, P. (2004). Efficient
algorithm for periodic scheduling. Computer
Networks, 45:155–173.
Andrews, M. and Zhang, L. (2005). Scheduling over a
time-varying user-dependent channel with applications
to high-speed wireless data. Journal of the ACM,
52(5):809–834.
Ben, G., Richard, J., Lipton, Andrea, L., and F, F. (2005).
Estimating the maximum.Journal of Algorithms,
54:105–114.
Chakrabarti, S., Demmel, J., and Yelick, K. (1997).
Models and scheduling algorithms for mixed data and
task parallel programs. Journal of Parallel and
Distributed Computing, 47:168–184.
Cooling, J. and Tweedale, P. (1997). Task scheduler co-
processor for hard real-time systems. Microprocessors
and Microsystems, 20:553–566.
Janche, S., Ke-hsiung, C., and Vernon, R. (1994). Efficient
algorithm for simulating service diciplines. Simulation
Practice and Theory, 1:223–244.
Philip, J. and Rasch (1970). A queuing theory study of
round-robin scheduling of time-shared computer
systems. Journal of Association for Computing
Machinary, 17(1):131–145.
Rahul, G. and Xiaoqiang, C. (1999). Rrr: recursive round
robin scheduler. Computer Networks, 31:1951–1966.
Ramabhadran, S. and Pasquale, J. (2006). The stratified
round robin scheduler: Design, analysis and imple
mentation. IEEE/ACM Transactions on Networking,
14(6):1362–1373.
Ramos, R. J., Rego, V., and Sang, J. (2006). An efficient
burst-arrival and batch-departure algorithm for round-
robin servicestar. Simulation Modelling Practice and
Theory, 14(1):1–24.
Salil, S., Kanhere, and Sethu, H. (2004). Investigated
socket-based rr scheduling scheme for tightly coupled
clusters providing single-name images. Computer
Communications, 27:667–678.
Seungmin, B., Hwakyung, R., and Sungchun, K. (2004).
Investigated socket-based rr scheduling scheme for
tightly coupled clusters providing single-name im-
ages. Journal of Systems Architecture, 50:299–308.
Silberschatz, A., Galvinand, P. B., and Gagne, G. (2000).
Operating System Concepts. John Wiley and Sons,
Inc., New York. London.
Srinivasan, A. and Anderson, J. (2005). Fair scheduling of
dynamic task systems on multiprocessors. Journal of
Systems and Software, 77:67–80.
Tsiligaridis, J. and Acharya, R. (2005). Three new
approaches for adjustment and improvement of the rr
scheduler in a dynamic resource environment.
Computer Communications, 28:929–946.
ESTIMATION OF QUANTUM TIME LENGTH FOR ROUND-ROBIN SCHEDULING ALGORITHM USING
NEURAL NETWORKS
257