ACKNOWLEDGEMENTS
Within the project “PLM Management Extension
through Knowledge-Based Product Use Information
Feedback into Product Development“ (WiRPro),
KBS staff is currently working on a solution to
integrate information from the product use phase
into the product development phase. The authors of
this paper have made significant contributions to that
development.
We express our sincere thanks to the Deutsche
Forschungsgemeinschaft (DFG) for financing this
research and to our project partner of the University
of Bochum, Chair of Information Technology in
Mechanical Engineering (ITM).
REFERENCES
Holland, A.; Fathi, M.; Abramovici, M.; Neubach, M.,
2008b. Enhancing a PLM System in Regard to the
Integrated Management of Product Item and Product
Type Data. In: Proceedings of the 2008 IEEE
International Conference on Systems, Man, and
Cybernetics (IEEE SMC 2008), 12.-15.10.2008,
Singapore, ISBN: 1-4244-2384-2.
Holland, A.; Fathi, M.; Abramovici, M.; Neubach, M.,
2009. Knowledge-Based Feedback of Product Use
Information into Product Development. In:
International Conference on Enginieering Design
(ICED'09), Stanford University, Stanford, CA, USA
Salini S., Kenett R. S., 2009. Bayesian Networks of
Customer Satisfaction Survey Data. In: Journal of
Applied Statistics, Volume 36, Issue 11 November
2009, pages 1177 – 1189.
Koski, T., Noble, J. M., 2009. Bayesian Networks – An
Introduction. John Wiley & Sons, Ltd. The Atrium,
Southern Gate, Chichester, West Sussex, PO19 8SQ,
United Kingdom.
Cowell R. G., Dawid P., Lauritzen S. L., Spiegelhalter
D.J., 2007. Probabilistic Networks and Expert
Systems. Springer, New York, USA.
Jensen, F.V., Nielsen, T., 2007. Bayesian Networks and
Decision Graphs. Statistics for Engineering and
Information Science, Springer-Verlag, Berlin
Heidelberg New York, 2nd Edition.
Borgelt, C.; Kruse, R., 2002. Graphical Models. Methods
for Data Analysis and Mining. John Wiley & Sons,
West Sussex, United Kingdom.
Holland, A.; Fathi, M.; Abramovici, M.; Neubach, M.,
2008a. Competing Fusion for Bayesian Applications.
In Proceedings of the 12th Intl. Conference on
Information Processing and Management of
Uncertainly in Knowledge-Based Systems (IPMU
2008), Malaga, Spain.
Klein L.: Sensor and Data Fusion, 2004. A Tool for
Information Assessment and Decision Making. SPIE –
The Society of Photo-Optical Instrumentation
Engineers, Beelingham, Washington.
Clemen R.T., Winkler R. L, 1999. Combining Probability
Distributions from Experts in Risk Analysis. In: Risk
Analysis 19(2): 187–203.
Yuan C., Druzdzel M., 2004. A Comparison on the
Effectiveness of Two Heuristics for Importance
Sampling. In: Second European Workshop on
Probabilistic Graphical Models (PGM-04), Leiden,
Netherlands.
Cheng J., Druzdzel M., 2000. BN-AIS: An Adaptive
Importance Sampling Algorithm for Evidential
Reasoning in Large Bayesian Networks. In: Journal of
Artificial Intelligence Research, 13:155-188.
Henrion M., 1988. Propagating Uncertainty in Bayesian
Networks by Probablistic Logic Sampling. In:
Uncertainty in Artificial Intelligence 2, pages 149-
163, New York, N.Y. Elsevier Science Publishing
Company, Inc..
Fung R., Favero B. del, 1994. Backward Simulation in
Bayesian Networks. In: 10th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-94), pages
227-234, San Mateo, CA. Morgan Kaufmann
Publishers, Inc..
Fung R., Chang K.-C., 1989. Weighing and Integrating
Evidence for Stochastic Simulation in Bayesian
Networks. In: M. Henrion, R.D. Shachter, L.N. Kanal,
and J.F. Lemmer, editors, Uncertainty in Artificial
Intelligence 5, pages 209-219, New York, N. Y.
Elsevier Science Publishing Company, Inc..
Decision Systems Laboratory DSL, GeNIe Guide,
University of Pittsburgh, USA (2009)
http://genie.sis.pitt.edu/ (last visit: 25.01.2010)
Stone M., 1961. The Opinion Pool. The Annals of
Mathematical Statistics, 32(4):1339-1342.
Russell S. J., Norvig P., 2009. Artificial Intelligence: A
Modern Approach. Prentice Hall, USA, 3rd edition.
Lunze J., 1995. Künstliche Intelligenz für Ingenieure –
Band 2: Technische Anwendungen. R. Oldenburger
Verlag GmbH, München.
Gaag L.C. van der, Renooij S., 2001: On the Evaluation of
Probabilistic Networks. In: 8th Conference on
Artificial Intelligence in Medicine. Lecture Notes in
Computer Science, volume 2101, pages 457-461,
Springer-Verlag, Berlin Heidelberg New York.
Kullback S., 1959. Information Theory and Statistics.
Wiley.
Kuntze D., 2007. Untersuchung von Clustering-
Algorithmen für die Kullback-Leibler-Divergenz.
Fakultät für Elektrotechnik, Informatik und
Mathematik der Universität Paderborn.
Neapolitan, R. E. 2003. Learning Bayesian Networks.
Prentice Hall, USA.
KMIS 2010 - International Conference on Knowledge Management and Information Sharing
142