Workshop, From Agent Theory to Agent Implementa-
tion, pages 3–9.
Addis, A., Armano, G., and Vargiu, E. (2010). Experimen-
tal assessment of a threshold selection algorithm for
tuning classifiers in the field of hierarchical text cat-
egorization. In Proceedings of 17th RCRA Interna-
tional Workshop on Experimental evaluation of algo-
rithms for solving problems with combinatorial explo-
sion.
Apt´e, C., Damerau, F., and Weiss, S. M. (1994). Automated
learning of decision rules for text categorization. ACM
Transactions on Information Systems, 12(3):233–251.
Armano, G. (2009). On the progressive filtering approach
to hierarchical text categorization. Technical report,
DIEE - University of Cagliari.
Bellifemine, F., Caire, G., and Greenwood, D. (2007). De-
veloping Multi-Agent Systems with JADE (Wiley Se-
ries in Agent Technology). John Wiley and Sons.
Bennett, P. N. and Nguyen, N. (2009). Refined experts:
improving classification in large taxonomies. In SI-
GIR ’09: Proceedings of the 32nd international ACM
SIGIR conference on Research and development in
information retrieval, pages 11–18, New York, NY,
USA. ACM.
Brank, J., Mladenic, D., and Grobelnik, M. (2010). Large-
scale hierarchical text classification using svm and
coding matrices. In Large-Scale Hierarchical Clas-
sification Workshop.
Ceci, M. and Malerba, D. (2003). Hierarchical classifica-
tion of HTML documents with WebClassII. In Sebas-
tiani, F., editor, Proceedings of ECIR-03, 25th Euro-
pean Conference on Information Retrieval, pages 57–
72. Berlin Heidelberg NewYork: Springer.
Ceci, M. and Malerba, D. (2007). Classifying web doc-
uments in a hierarchy of categories: a comprehen-
sive study. Journal of Intelligent Information Systems,
28(1):37–78.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). SMOTE: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16:321–357.
Cost, W. and Salzberg, S. (1993). A weighted nearest
neighbor algorithm for learning with symbolic fea-
tures. Machine Learning, 10:57–78.
D’Alessio, S., Murray, K., and Schiaffino, R. (2000). The
effect of using hierarchical classifiers in text catego-
rization. In Proceedings of of the 6th International
Conference on Recherche dInformation Assiste par
Ordinateur (RIAO), pages 302–313.
Dumais, S. T. and Chen, H. (2000). Hierarchical classifica-
tion of Web content. In Belkin, N. J., Ingwersen, P.,
and Leong, M.-K., editors, Proceedings of SIGIR-00,
23rd ACM International Conference on Research and
Development in Information Retrieval, pages 256–
263, Athens, GR. ACM Press, New York, US.
Esuli, A., Fagni, T., and Sebastiani, F. (2008). Boosting
multi-label hierarchical text categorization. Inf. Retr.,
11(4):287–313.
Gaussier, E., Goutte, C., Popat, K., and Chen, F. (2002).
A hierarchical model for clustering and categorising
documents. In Proceedings of the 24th BCS-IRSG Eu-
ropean Colloquium on IR Research, pages 229–247,
London, UK. Springer-Verlag.
Japkowicz, N. (2000). Learning from imbalanced data sets:
a comparison of various strategies. In AAAI Workshop
on Learning from Imbalanced Data Sets.
Koller, D. and Sahami, M. (1997). Hierarchically classi-
fying documents using very few words. In Fisher,
D. H., editor, Proceedings of ICML-97, 14th Interna-
tional Conference on Machine Learning, pages 170–
178, Nashville, US. Morgan Kaufmann Publishers,
San Francisco, US.
Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. (2006).
Handling imbalanced datasets: a review. GESTS In-
ternational Transactions on Computer Science and
Engineering, 30:25–36.
Kotsiantis, S. and Pintelas, P. (2003). Mixture of expert
agents for handling imbalanced data sets. Ann Math
Comput Teleinformatics, 1:46–55.
Kubat, M. and Matwin, S. (1997). Addressing the curse of
imbalanced training sets: One-sided selection. In In
Proceedings of the Fourteenth International Confer-
ence on Machine Learning, pages 179–186. Morgan
Kaufmann.
Lewis, D., Yang, Y., Rose, T., and Li, F. (2004). RCV1:
A new benchmark collection for text categorization
research. Journal of Machine Learning Research,
5:361–397.
Lewis, D. D. (1995). Evaluating and optimizing au-
tonomous text classification systems. In SIGIR ’95:
Proceedings of the 18th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval, pages 246–254, New York, NY,
USA. ACM.
McCallum, A. K., Rosenfeld, R., Mitchell, T. M., and Ng,
A. Y. (1998). Improving text classification by shrink-
age in a hierarchy of classes. In Shavlik, J. W., edi-
tor, Proceedings of ICML-98, 15th International Con-
ference on Machine Learning, pages 359–367, Madi-
son, US. Morgan Kaufmann Publishers, San Fran-
cisco, US.
Mladenic, D. and Grobelnik, M. (1998). Feature selection
for classification based on text hierarchy. In Text and
the Web, Conference on Automated Learning and Dis-
covery CONALD-98.
Rousu, J., Saunders, C., Szedmak, S., and Shawe-Taylor,
J. (2005). Learning hierarchical multi-category text
classification models. In ICML ’05: Proceedings of
the 22nd international conference on Machine learn-
ing, pages 744–751, New York, NY, USA. ACM.
Ruiz, M. E. and Srinivasan, P. (2002). Hierarchical text cat-
egorization using neural networks. Information Re-
trieval, 5(1):87–118.
Takigawa, Y., Hotta, S., Kiyasu, S., and Miyahara, S.
(2005). Pattern classification using weighted aver-
age patterns of categorical k-nearest neighbors. In
Proceedings of the 1th International Workshop on
KDIR 2010 - International Conference on Knowledge Discovery and Information Retrieval
22