1000 finite-volume-elements should be replaced by
samples of the high resolution model. Further the
use of a more fitting cluster algorithm will improve
the performance regarding the number of used
ANNs. The forecast of further minority species like
NO
x
or unburnt hydrocarbons can help to fulfil
current exhaust emission directives.
ACKNOWLEDGEMENTS
The investigations were conducted as part of the
joint research programme
COOREFF-
T/COORETEC-turbo
in the frame of AG Turbo.
The work was supported by the Bundesministerium
für Wirtschaft und Technologie (BMWi) as per
resolution of the German Federal Parliament under
grant number
0327716L. The authors gratefully
acknowledge AG Turbo and
MAN Diesel & Turbo
SE
for their support and permission to publish this
paper. The responsibility for the content lies solely
with its authors.
REFERENCES
Barlow, R. S. and Frank, J. H. (1998). Proc. Combust.
Inst. 27:1087-1095. The Combustion Institute.
Pittsburgh.
Barlow, R. S., Frank, J. H., A. N. Karpetis, and Chen, J.-
Y. (2005). Piloted Methane/Air Jet Flames: Scalar
Structure and Transport Effects, 143:433-449.
Combustion Flame.
Blasco J. A., Fueyo N., Dopazo C., Ballester J. (1998).
Modelling the Temporal Evolution of a Reduced
Combustion Chemical System With an Artificial
Neural Network, 113:38-52. Combustion and Flame.
Chen J.-Y., Blasco J. A., Fueyo N., Dopazo C. (2000). An
economical strategy for storage of chemical kinetics:
Fitting in situ adaptive tabulation with artificial
neural networks, 28:115-121. Proceedings of the
Combustion Institute, Baltimore: Port City Press.
Harder, S., Joos, F. (2007). Modelling a Non-Premixed
Industrial 18 MW Gas Turbine Combustor, GT2007-
27370 GTI/ASME. Turbo Expo, Montreal: Canada.
Gregory P. Smith, David M. Golden, Michael Frenklach,
Nigel W. Moriarty, Boris Eiteneer, Mikhail
Goldenberg, C. Thomas Bowman, Ronald K. Hanson,
Soonho Song, William C. Gardiner, Jr., Vitali V.
Lissianski, and Zhiwei. (n.d.). GRI-Mech 3.0. from
http://www.me.berkeley.edu/gri_mech/.
Große, L., Joos, F. (2008). Usage of Artificial Neural
Networks for Data Handling, GfKL 2008. German
Classification Society, Hamburg: Germany.
Große, L., Joos, F. (2009). The use of ANN for turbo
engine applications, 17
th
European Symposium on
Artificial Neural Networks, 207-212. ESANN 2009,
Bruges: d-side publications.
Große, L., Joos, F. (2010). Approximation of chemical
reaction rates in turbulent combustion simulation ,
18
th
European Symposium on Artificial Neural
Networks, 195-200. ESANN 2010, Bruges: d-side
publications.
Igel, C., Husken, M. (2003). Empirical Evaluation of the
Improved RPROP Learning Algorithms, 105-123.
Neurocomputing 50C.
Reaction Design, CHEMKIN. (n.d.). from
http://www.reactiondesign.com/.
Sandia/TUD Piloted/CH4/Air Jet Flames (2003). from
http://www.sandia.gov/TNF/DataArch/FlameD.html.
Zell, A. (1997). Simulation Neuronaler Netze. Oldenburg:
Wissenschaftsverlag.
ICFC 2010 - International Conference on Fuzzy Computation
410