HYBRID POPULATION-BASED INCREMENTAL LEARNING TO ASSIGN TERMINALS TO CONCENTRATORS
Eugénia Moreira Bernardino, Anabela Moreira Bernardino, Juan Manuel Sánchez-Pérez, Juan Antonio Gómez-Pulido, Miguel Angel Vega-Rodríguez
2010
Abstract
In the last decade, we have seen a significant growth in communication networks. In centralised communication networks, a central computer serves several terminals or workstations. In large networks, some concentrators are used to increase the network efficiency. A collection of terminals is connected to a concentrator and each concentrator is connected to the central computer. In this paper we propose a Hybrid Population-based Incremental Learning (HPBIL) to assign terminals to concentrators. We use this algorithm to determine the minimum cost to form a network by connecting a given collection of terminals to a given collection of concentrators. We show that HPBIL is able to achieve good solutions, improving the results obtained by previous approaches.
References
- Abuali, F., Schoenefeld, D., Wainwright, R., 1994. Terminal assignment in a Communications Network Using Genetic Algorithms. In Proc. of the 22nd Annual ACM Computer Science Conference, pp. 74- 81. ACM Press.
- Baluja, S., 1994. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical report CMU-CS-95-163, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
- Baluja, S., 1996. Genetic Algorithms and Explicit Search Statistics. In Advances in Neural Information Processing Systems, pp. 319-325. MIT Press.
- Baluja, S., 1997. Prototyping Intelligent Vehicle Modules Using Evolutionary Algorithms. In Evolutionary Algorithms in Engineering Applications, pp. 24 1-257. Springer-Verlag.
- Baluja, S., Caruana, R.. 1995. Removing the genetics form the standard genetic algorithm. In Proceeding of the International Conference on Machine Learning, pp. 38-46.
- Bernardino, E., Bernardino, A., Sánchez-Pérez, J., VegaRodríguez, M., Gómez-Pulido, J., 2008a. Tabu Search vs Hybrid Genetic Algorithm to solve the terminal assignment problem. In IADIS International Conference Applied Computing, pp. 404-409. IADIS Press.
- Bernardino, E., Bernardino, A., Sánchez-Pérez, J., VegaRodríguez, M., Gómez-Pulido, J., 2008b. Solving the Terminal Assignment Problem Using a Local Search Genetic Algorithm. In International Symposium on Distributed Computing and Artificial Intelligence, pp. 225-234. Springer.
- Bernardino, E., Bernardino, A., Sánchez-Pérez, J., VegaRodríguez, M., Gómez-Pulido, J., 2009a. A Hybrid Differential Evolution Algorithm for solving the Terminal assignment problem. In International Symposium on Distributed Computing and Artificial Intelligence 2009, pp. 178-185. Springer.
- Bernardino, E., Bernardino, A., Sánchez-Pérez, J., VegaRodríguez, M., Gómez-Pulido, J., 2009b. A Hybrid Ant Colony Optimization Algorithm for Solving the Terminal Assignment Problem. In International Conference on Evolutionary Computation, 2009, pp. 144-151. Springer.
- Bernardino, E., Bernardino, A., Sánchez-Pérez, J., VegaRodríguez, M., Gómez-Pulido, J., 2010a A Hybrid Differential Evolution Algorithm with a Multiple Strategy for Solving the Terminal Assignment Problem. In 6th Hellenic Conference on Artificial Intelligence 2010, pp. 303-308. Springer.
- Bernardino, E., Bernardino, A., Sánchez-Pérez, J., VegaRodríguez, M., Gómez-Pulido, J., 2010b. A Hybrid Scatter Search Algorithm to assign terminals to concentrators. In Proc. of the 2010 IEEE Congress on Evolutionary Computation, pp. 1-8. IEEE Computer Society. Los Alamitos, CA, USA.
- He, Z., Wei, C., Jin, B., Pei, W., Yang, L., 1999. A new population-based incremental learning method for the traveling salesman problem. In Proc. of the 1999 Congress on Evolutionary Computation, vol. 2, pp. 1152-1156. IEEE.
- Khuri, S., Chiu, T., 1997. Heuristic Algorithms for the Terminal Assignment Problem. In Proc. of the ACM Symposium on Applied Computing, pp. 247-251. ACM Press.
- Salcedo-Sanz, S., Yao, X., 2004. A hybrid Hopfield network-genetic algorithm approach for the terminal assignment problem. IEEE Transaction On Systems, Man and Cybernetics, 2343-2353.
- Xu, Y., Salcedo-Sanz, S., Yao, X. 2004 Non-standard cost terminal assignment problems using tabu search approach. In IEEE Conference in Evolutionary Computation, vol. 2, pp. 2302-2306.
- Yao, X., Wang, F., Padmanabhan, K., Salcedo-Sanz, S., 2005. Hybrid evolutionary approaches to terminal assignment in communications networks. In Recent Advances in Memetic Algorithms and related search technologies, vol. 166, pp. 129-159. Springer, Berlin.
Paper Citation
in Harvard Style
Moreira Bernardino E., Moreira Bernardino A., Sánchez-Pérez J., Gómez-Pulido J. and Vega-Rodríguez M. (2010). HYBRID POPULATION-BASED INCREMENTAL LEARNING TO ASSIGN TERMINALS TO CONCENTRATORS . In Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010) ISBN 978-989-8425-31-7, pages 182-189. DOI: 10.5220/0003076301820189
in Bibtex Style
@conference{icec10,
author={Eugénia Moreira Bernardino and Anabela Moreira Bernardino and Juan Manuel Sánchez-Pérez and Juan Antonio Gómez-Pulido and Miguel Angel Vega-Rodríguez},
title={HYBRID POPULATION-BASED INCREMENTAL LEARNING TO ASSIGN TERMINALS TO CONCENTRATORS
},
booktitle={Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)},
year={2010},
pages={182-189},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003076301820189},
isbn={978-989-8425-31-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)
TI - HYBRID POPULATION-BASED INCREMENTAL LEARNING TO ASSIGN TERMINALS TO CONCENTRATORS
SN - 978-989-8425-31-7
AU - Moreira Bernardino E.
AU - Moreira Bernardino A.
AU - Sánchez-Pérez J.
AU - Gómez-Pulido J.
AU - Vega-Rodríguez M.
PY - 2010
SP - 182
EP - 189
DO - 10.5220/0003076301820189