ACKNOWLEDGEMENTS
James Glenn was supported by sabbatical leave
granted by the Loyola College of Arts and Sciences
at Loyola University Maryland.
REFERENCES
Aizawa, A. and Wah, B. (1993). Scheduling of genetic al-
gorithms in a noisy environment. In Forrest, S., editor,
Proc. 5th Intl. Conf. on Genetic Algorithms, pages 48–
55, San Mateo, CA. Morgan Kaufman.
Arnold, D. and Beyer, H.-G. (2003). A comparison of evo-
lution strategies with other direct search methods in
the presense of noise. Comp. Opt. and App., 24:135–
159.
Bellman, R. E. (1957). Dynamic Programming. Princeton
University Press, Princeton, NJ, USA.
De Jong, K. (1975). An Analysis of the Behavior of a Class
of Genetic Adaptive Systems. PhD thesis, University
of Michigan.
Fang, H. (2005a). The nature of retrograde analysis for Chi-
nese chess, part I. ICGA Journal, 28(2):91–105.
Fang, H. (2005b). The nature of retrograde analysis for Chi-
nese chess, part II. ICGA Journal, 28(3):140–152.
Fitzpatrick, J. and Grefenstette, J. (1988). Genetic algo-
rithms in noisy environments. Machine Learning,
3:101–120.
Gasser, R. (1996). Solving nine men’s Morris. Computa-
tional Intelligence, 12:24–41.
Glenn, J. (2006). An optimal strategy for Yahtzee. Techni-
cal Report CS-TR-0002, Loyola College in Maryland,
4501 N. Charles St, Baltimore MD 21210, USA.
Glenn, J. (2007). Computer strategies for solitaire Yahtzee.
In IEEE Symp. on Comp. Intell. and Games, pages
132–139.
Glenn, J. and Aloi, C. (2009). A generalized heiristic for
can’t stop. In Proc. 22nd FLAIRS Conf., pages 421–
426. AAAI Press.
Glenn, J., Fang, H., and Kruskal, C. P. (2008). Retrograde
approximate algorithms for some stochastic games.
ICGA Journal, 31(2):77–96.
Irving, G., Donkers, J., and Uiterwijk, J. (2000). Solving
Kalah. ICGA Journal, 23(3):139–147.
Jin, Y. and Branke, J. (2005). Evolutionary optimization
in uncertain environments – a survey. Evolutionary
Computation, IEEE Transactions on, 9(3):303–317.
Keller, M. (1986). Can’t stop? Try the rule
of 28. World Game Review, 6. See also
http://www.solitairelaboratory.com/cantstop.html last
visited Nov. 22, 2008.
Lake, R., Schaeffer, J., and Lu, P. (1994). Solving large ret-
rograde analysis problems using a network of work-
stations. In van den Herik, H., Herschberg, I. S., and
Uiterwijk, J., editors, Advances in Computer Games
VII, pages 135–162. University of Limburg, Maas-
tricht. the Netherlands.
M¨uhlenbein, H. and Schlierkamp-Voosen, D. (1993). Pre-
dictive models for the breeder genetic algorithm. Evo-
lutionary Computation, 1:25–49.
M¨uhlenbein, H., Schornisch, M., and Born, J. (1991). The
parallel genetic algorithm as function optimizer. Par-
allel Computing, 17:619–632.
Neller, T. and Presser, C. (2004). Optimal play of the dice
game Pig. The UMAP Journal, 25(1):25–47.
Neller, T. and Presser, C. (2006). Pigtail: A Pig addendum.
The UMAP Journal, 26(4):443–458.
Romein, J. W. and Bal, H. E. (2003). Solving the game of
Awari using parallel retrograde analysis. IEEE Com-
puter Society, 36(10):26–33.
Sackson, S. (2007). Can’t Stop. Face 2 Face Games, Provi-
dence, RI, USA. Boxed game set.
Schaeffer, J., Bj¨ornsson, Y., Burch, N., Lake, R., Lu, P., and
Sutphen, S. (2004). Building the checkers 10-piece
endgame databases. In van den Herik, H., Iida, H.,
and Heinz, E., editors, Advances in Computer Games
10. Many Games, Many Challenges, pages 193–210.
Kluwer Academic Publishers, Boston, USA.
Str¨ohlein, T. (1970). Untersuchungen ¨uber kombinatorische
Spiele. PhD thesis, Fakult¨at f¨ur Allegemeine Wis-
senschaften der Technischen Hochschule M¨unchen,
Munich.
Thompson, K. (1986). Retrograde analysis of certain
endgames. ICCA Journal, 9(3):131–139.
Thompson, K. (1996). 6-piece endgames. ICCA Journal,
19(4):215–226.
T¨orn, A. and Zilinskas, A. (1989). Global Optimization.
Springer Verlag, New York.
Woodward, P. (2003). Yahtzee: The solution. Chance,
16(1):18–22.
Wu, R. and Beal, D. (2001). Fast, memory-efficient retro-
grade algorithms. ICGA Journal, 24(3):147–159.
ICEC 2010 - International Conference on Evolutionary Computation
206