A RECEDING HORIZON GENETIC ALGORITHM FOR DYNAMIC MULTI-TARGET ASSIGNMENT AND TRACKING - A Case Study on the Optimal Positioning of Tug Vessels along the Northern Norwegian Coast

Robin T. Bye, Siebe B. van Albada, Harald Yndestad

2010

Abstract

Combining methodologies from cybernetics and artificial intelligence (AI), we present a receding horizon genetic algorithm (RHGA) for solving the task of dynamic assignment and tracking of multiple targets. We demonstrate the capabilities of the algorithm by means of a case study on optimal positioning of tugs to reduce the risk of oil tanker drifting accidents along the northern Norwegian coast. Through simulations we show that the RHGA performs intelligent target assignment and close target tracking while constantly reevaluating its suggested solutions based on current and predicted information. We see great potential for further development and consider our RHGA and problem description a platform for further research.

References

  1. Det Norske Veritas (2009). Rapport Nr. 2009-1016. Revisjon Nr. 01. Tiltaksanalyse - Fartsgrenser for skip som opererer i norske farvann. Technical report, Sjø- fartsdirektoratet.
  2. Earl, M. G. and D'andrea, R. (2007). A decomposition approach to multi-vehicle cooperative control. Robotics and Autonomous Systems, 55:276-291.
  3. Eide, M. S., Øvyind Endresen, Brett, P. O., Ervik, J. L., and Kjell Røang (2007a). Intelligent ship traffic monitoring for oil spill prevention: Risk based decision support building on AIS. Marine Pollution Bulletin, 54:145-148.
  4. Eide, M. S., Øyvind Endresen, Øyvind Breivik, Brude, O. W., Ellingsen, I. H., Kjell Røang, Hauge, J., and Brett, P. O. (2007b). Prevention of oil spill from shipping by modelling of dynamic risk. Marine Pollution Bulletin, 54:1619-1633.
  5. Goodwin, G. C., Graebe, S. F., and Salgado, M. E. (2001). Control System Design. Prentice Hall, New Jersey.
  6. Haupt, R. L. and Haupt, S. E. (2004). Practical Genetic Algorithms. Wiley, second edition.
  7. Havforskningsinstituttet (2010). Fisken og havet, saernummer 1a-2010: Det faglige grunnlaget for oppdateringen av forvaltningsplanen for barentshavet og havområdene utenfor lofoten. Technical report, Institute of Marine Research (Havforskningsinstituttet).
  8. Luo, X., Li, S., and Guan, X. (2010). Flocking algorithm with multi-target tracking for multi-agent systems. Pattern Recognition Letters, 31:800-805.
  9. Maciejowski, J. M. (2002). Predictive Control with Constraints. Prentice Hall, first edition.
  10. Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In Computer Graphics (ACM SIGGRAPH), volume 21, pages 25-34.
Download


Paper Citation


in Harvard Style

T. Bye R., B. van Albada S. and Yndestad H. (2010). A RECEDING HORIZON GENETIC ALGORITHM FOR DYNAMIC MULTI-TARGET ASSIGNMENT AND TRACKING - A Case Study on the Optimal Positioning of Tug Vessels along the Northern Norwegian Coast . In Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010) ISBN 978-989-8425-31-7, pages 114-125. DOI: 10.5220/0003087101140125


in Bibtex Style

@conference{icec10,
author={Robin T. Bye and Siebe B. van Albada and Harald Yndestad},
title={A RECEDING HORIZON GENETIC ALGORITHM FOR DYNAMIC MULTI-TARGET ASSIGNMENT AND TRACKING - A Case Study on the Optimal Positioning of Tug Vessels along the Northern Norwegian Coast},
booktitle={Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)},
year={2010},
pages={114-125},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003087101140125},
isbn={978-989-8425-31-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation - Volume 1: ICEC, (IJCCI 2010)
TI - A RECEDING HORIZON GENETIC ALGORITHM FOR DYNAMIC MULTI-TARGET ASSIGNMENT AND TRACKING - A Case Study on the Optimal Positioning of Tug Vessels along the Northern Norwegian Coast
SN - 978-989-8425-31-7
AU - T. Bye R.
AU - B. van Albada S.
AU - Yndestad H.
PY - 2010
SP - 114
EP - 125
DO - 10.5220/0003087101140125