only some simple forms of non monotonic
inferences (mainly related to categorization and to
exceptions inheritance). This solution goes in the
direction of a “dual” representation of concepts
within the ontologies, and the realization of hybrid
reasoning systems (monotonic and non monotonic)
on semantic network knowledge bases. Some of the
proposal reviewed in the sect. 4 above could be
probably interpreted in this perspective. It could be
objected that proposals based on non monotonic
extensions of classical DLs are not suitable to model
type 1 reasoning systems, since their computational
properties are even worst of those of traditional,
monotonic DLs. In this perspective, an alternative
solution should be combining ontologies and logic
programming rules, endowed with usual semantics
for non monotonic logic programs (see e.g. Eiter et
al. 2008).
REFERENCES
Baader, F., Calvanese, D., McGuinness, D., Nardi, D.,
Patel-Schneider, P., 2003. The Description Logic
Handbook: Theory, Implementations and
Applications. Cambridge University Press.
Baader, F., Hollunder, B., 1995. Embedding defaults into
terminological knowledge representation formalisms.
J. Autom. Reasoning 14(1), 149–180.
Barsalou, L. W., 1985. Continuity of the conceptual
system across species. Trends in Cognitive Science,
9(7), 305-311.
Bobillo, F., Straccia, U., 2009. An OWL Ontology for
Fuzzy OWL 2. Proceedings of the 18th International
Symposium on Methodologies for Intelligent Systems
(ISMIS-09). Lecture Notes in Computer Science.
Springer Verlag.
Bonatti, P.A., Lutz, C., Wolter, F., 2006. Description
logics with circumscription. In: Proc. of KR, pp. 400–
410.
Brachman, R., 1985. I lied about the trees. The AI
Magazine, 3(6), 80-95.
Brachman, R., Schmolze, J. G., 1985. An overview of the
KL-ONE knowledge representation system, Cognitive
Science, 9, 171-216.
Brachman, R., Schmolze, J. G. (eds.), 1985. Readings in
Knowledge Representation, Los Altos, CA: Morgan
Kaufmann.
Brandom, R., 1994. Making it Explicit. Cambridge, MA:
Harvard University Press.
Calegari, S., Ciucci, D., 2007. Fuzzy Ontology, Fuzzy
Description Logics and Fuzzy-OWL. Proc. WILF
2007, Vol. 4578 of LNCS.
Da Costa P. C. G., Laskey, K. B., 2006. PR-OWL: A
framework for probabilistic ontologies. Proc. FOIS-
2006, 237–249.
Dell’Anna, A., Frixione, M., 2010. On the advantage (if
any) and disadvantage of the conceptual/
nonconceptual distinction for cognitive science. Minds
& Machines, 20, 29-45.
Ding, Z., Peng, Y., Pan, R.. 2006. BayesOWL:
Uncertainty modeling in Semantic Web ontologies. In
Z. Ma (ed.), Soft Computing in Ontologies and
Semantic Web, vol. 204 of Studies in Fuzziness and
Soft Computing, Springer.
Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf,
A., 1998. An epistemic operator for description logics.
Artificial Intelligence, 100(1-2), 225–274.
Donini, F. M., Nardi, D., Rosati, R., 2002. Description
logics of minimal knowledge and negation as failure.
ACM Trans. Comput. Log., 3(2), 177–225.
Eiter, T., Ianni, G., Luckasiewicz, T., schinklauer, R.,
Tompits, H. 2008. Combining answer set
programming with description logics for the Semantic
Web. Artificial Intelligence, 172, 1495-1539.
Evans, J. S. B. T., Frankish, K. (eds.), 2008. In Two
Minds: Dual Processes and Beyond. New York, NY:
Oxford UP.
Fodor, J., 1981. The present status of the innateness
controversy. In J. Fodor, Representations, Cambridge,
MA: MIT Press.
Fodor, J., Pylyshyn, Z., 1988. Connectionism and
cognitive architecture: A critical analysis. Cognition,
28, 3-71.
Frixione, M., 2007. Do concepts exist? A naturalistic point
of view. In C. Penco, M. Beaney, M. Vignolo (eds.).
Explaining the Mental. Cambridge, UK: Cambridge
Scholars Publishing.
Frixione, M., Gaglio, S., Spinelli, G. 1989. Are there
individual concepts? Individual concepts and definite
descriptions in SI-Nets. International Journal of Man
Machine Studies, 30, 489-503.
Gao, M., Liu, C., 2005. Extending OWL by fuzzy
Description Logic. Proc. 17th IEEE Int. Conf. on
Tools with Artificial Intelligence (ICTAI 2005), 562–
567. IEEE Computer Society, Los Alamitos.
Giordano, L., Ghiozzi, V.,
Olivetti, N., Pozzato, G.,
2007.
Preferential Description Logics. Logic for
Programming, In Artificial Intelligence, and
Reasoning, LNCS, Springer Verlag.
Hayes, P., 2001. Dialogue on rdf-logic. Why must the web
be monotonic?. World Wide Web Consortium (W3C).
Link: http://lists.w3.org/Archives/public/www-rdf-
logic/2001Jul/0067.html
Katz, Y., Parsia, B., 2005. Towards a non monotonic
extension to OWL. Proc. OWL Experiences and
Directions, Galway, November 11-12.
Klinov, P., Parsia, B., 2008. Optimization and evaluation
of reasoning in probabilistic description logic:
Towards a systematic approach. In: Sheth, A.P., Staab,
S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318,
213–228. Springer, Heidelberg.
Lukasiewicz, L., Straccia, U., 2008. Managing uncertainty
and vagueness in description logics for the Semantic
Web. Journal of Web Semantics, 6, 291-308.
KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development
402