electrode locations. We found that, to achieve the
same accuracy as with the active wet electrodes, we
have to at least consider a 4 times longer EEG inter-
vals. Nevertheless, we still believe that this to be an
encouraging result for a dry electrode SSVEP BCI ap-
plication.
ACKNOWLEDGEMENTS
NVM is supported by the European Commission
(IST-2004-027017),NC is supported by the European
Commission (IST-2007-217077), AC is supported
by a specialization grant from the Agentschap voor
Innovatie door Wetenschap en Technologie (IWT)
(Flemish Agency for Innovation through Science
and Technology), MMVH is supported by research
grants received from the Excellence Financing pro-
gram (EF 2005) and the CREA Financing program
(CREA/07/027) of the K.U.Leuven, the Belgian Fund
for Scientific Research – Flanders (G.0234.04 and
G.0588.09), the Interuniversity Attraction Poles Pro-
gramme – Belgian Science Policy (IUAP P6/054), the
Flemish Regional Ministry of Education (Belgium)
(GOA 10/019), and the European Commission (IST-
2004-027017 and IST-2007-217077). This work is
also supported by a SWIFT grant from the King Bau-
douin Foundation of Belgium for developing patient
BCI applications (2009).
The authors wish to thank Refet Firat Yazicioglu,
Tom Torfs, and Chris Van Hoof, from the Interuniver-
sity Microelectronics Centre (IMEC) in Leuven, for
providing us with the wireless EEG system and for
their support.
REFERENCES
Birbaumer, N., K¨ubler, A., Ghanayim, N., Hinterberger, T.,
Perelmouter, J., Kaiser, J., Iversen, I., Kotchoubey,
B., Neumann, N., and Flor, H. (2000). The thought
translation device (ttd) for completely paralyzedpa-
tients. IEEE Transactions on Rehabilitation Engineer-
ing, 8(2):190–193.
Blankertz, B., Dornhege, G., Krauledat, M., M¨uller, K.-
R., and Curio, G. (2007). The non-invasive berlin
braincomputer interface: fast acquisition of effec-
tive performance in untrained subjects. NeuroImage,
37(2):539–550.
Cheng, M., Gao, X., Gao, S., and Xu, D. (2002). De-
sign and implementation of a brain-computer inter-
face with high transfer rates. IEEE Transactions on
Biomedical Engineering, 49(10):1181–1186.
Combaz, A., Manyakov, N., Chumerin, N., Suykens, J., and
Van Hulle, M. (2009). Feature Extraction and Classifi-
cation of EEG Signals for Rapid P300 Mind Spelling.
In 2009 International Conference on Machine Learn-
ing and Applications, pages 386–391. IEEE.
de Peralta Menendez, R., Dias, J., Soares, J., Prado, H., and
Andino, S. (2009). Multiclass brain computer inter-
face based on visual attention. In ESANN2009 pro-
ceedings, pages 437–442.
Farwell, L. and Donchin, E. (1988). Talking off the top of
your head: toward a mental prosthesis utilizing event-
related brain potentials. Electroencephalogr Clin Neu-
rophysiol., 70(6):510–523.
Gao, Y., R., W., X., G., B., H., and S., G. (2006). A practical
VEP-based brain-computer interface. IEEE transac-
tions on neural systems and rehabilitation engineer-
ing, 14(2).
K¨ubler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J., and
Birbaumer, N. (2001). Brain-computer communica-
tion: unlocking the locked. Psychological Bulletin,
127(3):358–375.
Luck, S. J. (2005). An introduction to event-related po-
tentials technique. The MIT Press, Cambridge, Mas-
sachusetts.
Luo, A. and Sullivan, T. (2010). A user-friendly SSVEP-
based brain–computer interface using a time-domain
classifier. Journal of Neural Engineering, 7:026010.
Manyakov, N., Chumerin, N., Combaz, A., and Hulle, M.
(2010). On the Selection of Time Interval and Fre-
quency Range of EEG Signal Preprocessing for P300
Brain-Computer Interfacing. In XII Mediterranean
Conference on Medical and Biological Engineering
and Computing 2010, pages 57–60. Springer.
Pfurtscheller, G., Guger, C., M¨uller, G., Krausz, G., and Ne-
uper, C. (2000). Brain oscillations control hand ortho-
sis in a tetraplegic. Neuroscience letters, 292(3):211–
214.
Pierce, J. (1980). An Introduction to Information Theory.
Dover, New York.
Sajda, P., M¨uller, K. R., and Shenoy, K. V. (2008). Brain-
computer interfaces. IEEE Signal Proccessing Maga-
zine, 25(1):16–17.
Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A., and
Shenoy, K. V. (2006). A high-performance brain–
computer interface. Nature, 442:195–198.
Yazicioglu, R., Torfs, T., Merken, P., Penders, J., Leonov,
V., Puers, R., Gyselinckx, B., and Van Hoof, C.
(2009). Ultra-low-power biopotential interfaces and
their applications in wearable and implantable sys-
tems. Microelectronics Journal, 40(9):1313–1321.
ICFC 2010 - International Conference on Fuzzy Computation
380