benefits most by adding spatial information compared
to the baseline method. As a possible extension to
the proposed method, the square-root transform of the
dependent variable can be incorporated into the Gaus-
sian process model, but this idea requires further stud-
ies since it involves designing a non-stationary covari-
ance function.
ACKNOWLEDGEMENTS
This work was supported by NSF Grants IIS-0705815
and IIS-0612149.
REFERENCES
Baron, P. (2006). Generation and Behavior of Air-
borne Particles (Aerosols). National Institute of
Occupational Health and Safety, http://www. cdc.
gov/niosh/topics/aerosols/pdfs/Aerosol 101. pdf. Re-
trieved on June.
Cressie, N. (1993). Statistics for Spatial Data. Wiley, New
York.
Das, D., Obradovic, Z., and Vucetic, S. (2009). Active
selection of sensor sites in remote sensing applica-
tions. In IEEE International Conference on Data Min-
ing (ICDM 09).
Dubovik, O. and King, M. (2000). A flexible inversion al-
gorithm for retrieval of aerosol optical properties from
Sun and sky radiance measurements. Journal of Geo-
physical Research, 105(D16):20676.
Han, B., Obradovic, Z., Li, Z., and Vucetic, S. (2006).
Data Mining Support for the Improvement of MODIS
Aerosol Retrievals. In IEEE International Conference
on Geoscience and Remote Sensing Symposium, 2006.
IGARSS 2006, pages 2453–2456.
Han, B., Vucetic, S., Braverman, A., and Obradovic, Z.
(2005). Construction of a geospatial predictor by fu-
sion of global and local models. In Proccedings of
8th International Conference on Information Fusion.
Citeseer.
Holben, B., Eck, T., Slutsker, I., Tanre, D., Buis, J., Setzer,
A., Vermote, E., Reagan, J., Kaufman, Y., Nakajima,
T., et al. (1998). AERONET–A federated instrument
network and data archive for aerosol characterization.
Remote Sensing of Environment, 66(1):1–16.
Kaufman, Y., Tanr
´
e, D., Remer, L., Vermote, E., Chu, A.,
and Holben, B. (1997). Operational remote sensing
of tropospheric aerosol over land from EOS moder-
ate resolution imaging spectroradiometer. J. Geophys.
Res, 102(17):051–17.
King, M. and Kaufman, J. (1992). Remote sensing of cloud,
aerosol, and water vapor properties from the Moderate
Resolution Imaging Spectrometer (MODIS). IEEE
Transactions on Geoscience and Remote Sensing,
30(1).
Lewis, D. D. and Gale, W. A. (1994). A sequential algo-
rithm for training text classifiers. In Proceedings of the
17th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 3–12. Springer-Verlag New York, Inc.
M
¨
uller, M., Kaifel, A., Weber, M., Tellmann, S., Burrows,
J., and Loyola, D. (2003). Ozone profile retrieval
from Global Ozone Monitoring Experiment (GOME)
data using a neural network approach (neural network
ozone retrieval system (NNORSY)). J. Geophys. Res,
108(D16):4497.
NASA (retrieved in 2010). Official MODIS website,
http://modis.gsfc.nasa.gov/.
Radosavljevic, V., Vucetic, S., and Obradovic, Z. (2009).
Reduction of ground-based sensor sites for spatio-
temporal analysis of aerosols. In SensorKDD ’09:
Proceedings of the Third International Workshop on
Knowledge Discovery from Sensor Data, pages 71–
78, New York, NY, USA. ACM.
Rasmussen, C. (1996). Evaluation of Gaussian processes
and other methods for non-linear regression. PhD the-
sis, University of Toronto.
Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian
Processes for Machine Learning. The MIT Press.
Remer, L., Tanr
´
e, D., Kaufman, Y., Levy, R., and Mattoo, S.
(2006). Algorithm for remote sensing of tropospheric
aerosol from MODIS: Collection 005. modis. gsfc.
nasa. gov/data/atbd/atbd mod02. pdf.
Seung, H. S., Opper, M., and Sompolinsky, H. (1992).
Query by committee. In Proceedings of the Fifth An-
nual Workshop on Computational Learning Theory,
pages 287–294, Pittsburgh, PA, USA. ACM Press.
Sinnott, R. (1984). Virtues of the Haversine. Sky and tele-
scope, 68:158.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M.,
Averyt, K., Tignor, M., and Miller, H. (2007). IPCC
2007. Climate Change 2007: the Physical Science Ba-
sis Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on
Climate Change.
Vucetic, S., Han, B., Mi, W., Li, Z., and Obradovic, Z.
(2008). A Data-Mining Approach for the Validation
of Aerosol Retrievals. IEEE Geoscience and Remote
Sensing Letters, 5(1):113–117.
PREDICTING GROUND-BASED AEROSOL OPTICAL DEPTH WITH SATELLITE IMAGES VIA GAUSSIAN
PROCESSES
375