Drummond, C. and Holte, R. C. (2003). C4.5, class imbal-
ance, and cost sensitivity: Why under-sampling beats
over-sampling. pages 1–8.
Duchateau, F., Bellahsene, Z., and Coletta, R. (2008).
A flexible approach for planning schema match-
ing algorithms. In OTM ’08: Proceedings of the
OTM 2008 Confederated International Conferences,
CoopIS, DOA, GADA, IS, and ODBASE 2008., pages
249–264, Berlin, Heidelberg. Springer-Verlag.
Ehrig, M., Staab, S., and Sure, Y. (2005). Bootstrapping on-
tology alignment methods with apfel. In WWW ’05:
Special interest tracks and posters of the 14th inter-
national conference on World Wide Web, pages 1148–
1149, New York, NY, USA. ACM.
Euzenat, J., Ferrara, A., Hollink, L., Isaac, A., Joslyn,
C., Malais
´
e, V., Meilicke, C., Nikolov, A., Pane, J.,
Sabou, M., Scharffe, F., Shvaiko, P., Spiliopoulos, V.,
Stuckenschmidt, H., Sv
´
ab-Zamazal, O., Sv
´
atek, V.,
dos Santos, C. T., Vouros, G. A., and Wang, S. (2009).
Results of the ontology alignment evaluation initiative
2009. In OM.
Euzenat, J. and Shvaiko, P. (2007). Ontology matching.
Springer-Verlag, Heidelberg (DE).
Ferrara, A., Lorusso, D., Montanelli, S., and Varese, G.
(2008). Towards a benchmark for instance match-
ing. In Shvaiko, P., Euzenat, J., Giunchiglia, F., and
Stuckenschmidt, H., editors, Ontology Matching (OM
2008), volume 431 of CEUR Workshop Proceedings.
CEUR-WS.org.
Ji, Q., Haase, P., and Qi, G. (2008). G.: Combination of
similarity measures in ontology matching using the
owa operator. In In: Proceedings of the 12th Inter-
national Conference on Information Processing and
Management of Uncertainty in Knowledge-Base Sys-
tems.
Joachims, T. (2002). SVM light.
Kalfoglou, Y. and Schorlemmer, M. (2005). Ontology map-
ping: The state of the art. In Semantic Interoperability
and Integration, Dagstuhl Seminar Proceedings. Inter-
nationales Begegnungs- und Forschungszentrum f
¨
ur
Informatik (IBFI).
Laub, J., Macke, J., Muller, K.-R., and Wichmann, F. A.
(2007). Inducing metric violations in human similar-
ity judgements. In Advances in Neural Information
Processing Systems 19, pages 777–784. MIT Press,
Cambridge, MA.
M. Nagy, M. V.-V. (2010). [towards an automatic semantic
data integration: Multi-agent framework approach].
Marie, A. and Gal, A. (2008). Boosting schema match-
ers. In OTM ’08: Proceedings of the OTM 2008 Con-
federated International Conferences, CoopIS, DOA,
GADA, IS, and ODBASE 2008., pages 283–300,
Berlin, Heidelberg. Springer-Verlag.
Marius Kloft, Ulf Brefeld, P. L. and Sonnenburg, S. (2008).
Non-sparse multiple kernel learning.
McCarthy, K., Zabar, B., and Weiss, G. (2005). Does cost-
sensitive learning beat sampling for classifying rare
classes? In UBDM ’05: Proceedings of the 1st in-
ternational workshop on Utility-based data mining,
pages 69–77, New York, NY, USA. ACM.
Rakotomamonjy, A., Bach, F., Canu, S., and Grandvalet, Y.
(2008). SimpleMKL. Journal of Machine Learning
Research, 9.
Scholkopf, B. and Smola, A. J. (2001). Learning with Ker-
nels: Support Vector Machines, Regularization, Opti-
mization, and Beyond. MIT Press, Cambridge, MA,
USA.
Shvaiko, P. and Euzenat, J. (2008). Ten challenges for ontol-
ogy matching. In On the Move to Meaningful Internet
Systems: OTM 2008, volume 5332 of Lecture Notes
in Computer Science, chapter 18, pages 1164–1182.
Berlin, Heidelberg.
Shvaiko, P. and Shvaiko, P. (2005). A survey of schema-
based matching approaches. Journal on Data Seman-
tics, 4:146–171.
Sonnenburg, S. and Raetsch, G. (2010). Shogun.
Sonnenburg, S., R
¨
atsch, G., Sch
¨
afer, C., and Sch
¨
olkopf, B.
(2006). Large scale multiple kernel learning. J. Mach.
Learn. Res., 7:1531–1565.
Srebro, N. (2008). How good is a kernel when used as a
similarity measure?
Stahl, A. (2005). Learning similarity measures: A for-
mal view based on a generalized cbr model. In Op-
tional Comment/Qualification: Validation of Inter-
Enterprise Management Framework (Trial 2), pages
507–521. Springer.
Wang, C., Lu, J., and Zhang, G. (2006). Integration of on-
tology data through learning instance matching. In WI
’06: Proceedings of the 2006 IEEE/WIC/ACM Inter-
national Conference on Web Intelligence, pages 536–
539, Washington, DC, USA. IEEE Computer Society.
Wu, G., Chang, E. Y., and Zhang, Z. (2005). An analysis
of transformation on non-positive semidefinite simi-
larity matrix for kernel machines. In Proceedings of
the 22nd International Conference on Machine Learn-
ing.
Xue, Y., Wang, C., Ghenniwa, H., and Shen, W. (2009). A
tree similarity measuring method and its application
to ontology comparison. j-jucs, 15(9):1766–1781.
Yager, R. R. (1988). On ordered weighted averaging ag-
gregation operators in multicriteria decisionmaking.
IEEE Trans. Syst. Man Cybern., 18(1):183–190.
Yu, S., Falck, T., Daemen, A., Tranchevent, L.-C., Suykens,
J. A. K., De Moor, B., and Moreau, Y.
KEOD 2010 - International Conference on Knowledge Engineering and Ontology Development
318