9. M. J. A Berry and G. Linoff, Data Mining Techniques For Marketing, Sales and Customer
Support. John Wiley & Sons, Inc., USA, 1996.
10. M. U. Fayyad, G. Piatesky-Shapiro, P. Smuth and R. Uthurusamy, Advances in Knowledge
Discovery and Data Mining. AAAI Press, 1996.
11. I. H. Witten and E. Frank, Data Mining – Practical Machine Learning Tools and Tech-
niques with Java Implementations, Morgan Kaufmann Publishers, 2000.
12. M. Halkidi, M. Vazirgiannis and I. Batistakis, “Quality Scheme Assessment in the Cluster-
ing Process”, Proceedings of PKDD, Lyon, France, 2000.
13. Weka, Available: www.cs.waikato.ac.nz/ml/weka
14. J. D. Novak, “Learning, Creating, and Using Knowledge: Concept Maps as Facilitative
Tools in Schools and Corporations”, Mahwah, NJ: Lawrence Erlbaum Associates, 1998.
15. J. Srivastava, R. Cooley, M. Desphande and P.N. Tan, “Web usage mining: Discovery and
applications of usage patterns from web data”. SIGKDD Explorations, 2000.
16. R. Cooley, B. Mobasher and J. Srivastava, “Data preparation for mining World Wide Web
browsing patterns”, Knowledge and Information Systems, 1999.
17. O. R. Zaiane, “Building a recommender agent for e-Learning systems”, Proc. of 7th Int.
Conf. On Computers in Education, Acuckland, New Zeeland, 2002.
18. L. Guo, X. Xiang and Y. Shi, “Use web usage mining to assist background online e-
Learning assessment”, 4th IEEE ICALT, 2004.
19. W. Abramovicz, T. Kaczmarek and M. Kowalkiewicz, “Supporting topic map creation
using data mining techniques”, Australian Journal of Information Systems, 2004.
20. J. Han and M. Kamber, Data Mining Concepts and Techniques, Morgan Kaufman, San
Francisco, 2001.
21. R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations and performance
improvements”, EDBT: Proc. of teh 5th Int. Conf. On Extending Database Technologies,
1995.
22. P. N. Tan, V. Kumar and J. Srivastava, “Selecting the right objective measure for associa-
tion analysis”, Information Systems, 2004.
23. R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules”, Proc. of the
20th Int. Conf. on Very Large Databases, Santiago, Chile, 1994.
24. W. Lin, S.A. Alvarez and C. Ruiz, “Efficient adaptive-support association rule mining for
recommender systems”, Data Mining and Knowledge Discovery, 2002.
25. E. Spertus and L. Stein, “A hyperlink-based recommender system written in squeal”, Proc.
ACM CIKM’98 Workshop on Web Information and Data Management, 1998.
26. B. Mobasher, “Data Mining for Web Personalization”, The Adaptive Web: Methods and
Strategies of Web Personalization, Lecture Notes in Computer Science, New York, 2006,
Vol. Springer-Verlag, Berlin-Heidelberg.
27. O. Nasraoui, “World Wide Web Personalization”, Invited chapter in “Encyclopedia of Data
Mining and Data Warehousing”, 2005, J. Wang, Ed, Idea Group.
28. O. R. Zaiane, “Building a Recommender Agent for e-Learning Systems”, in Proc. of the 7th
International Conference on Computers in Education, Auckland, New Zealand, December,
2002, 3 – 6, pp 55-59.
29. C. Romero, S. Ventura, “Educational Data Mining: a Survey from 1995 to 2005,” Expert
Systems with Applications. Elsevier 1:33 (2007) 135-146.
30. C. Romero, S. Ventura, J. A. Delgado and P. D. Bra, “Personalized Links Recommenda-
tion-Based on Data Mining in Adaptive Educational Hypermedia Systems,” in Creating
New Learning Experiences on a Global Scale, Springer Berlin /Heidelberg(2007), pp.292-
306.
116