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Abstract: Design of controllers for teams of mobile autonomous systems presents many challenges that have been 
addressed in biological systems, such as behavior-based control paradigms that are decentralized, 
distributed, scalable, and robust. Quorum sensing is a distributed, decentralized decision-making process 
used by bacteria and by social insects to coordinate group behaviors and perform complex tasks. It is used 
by bacteria to control the colony behavior for a variety of functions, such as biofilm construction or 
initiating pathogenicity inside a host. It is used by social insects including the ant Temnothorax albipennis 
to collectively evaluate and select from amongst potentially many new nesting sites.Honeybees (Apis 
mellifera) use quorum sensing to collectively choose a new nesting site when the swarm grows too large 
and needs to split. It is shown that the quorum sensing paradigm may be used to provide robust 
decentralized team coordination and collective decision-making in mobile autonomous teams performing 
complex tasks. In this effort quorum sensing-inspired techniques are developed and applied to the design of 
a decentralized controller for a team of mobile autonomous agents surveying a field containing buried 
landmines.

1 INTRODUCTION 

Today’s military is increasingly reliant on the use of 
unmanned systems to perform a variety of missions 
including surveillance, precision target designation, 
mine detection, signals intelligence, and chemical-
biological-radiological-nuclear (CBRN) 
reconnaissance, as described in the Office of the 
Secretary of Defense FY2009–2034 Unmanned 
Systems Integrated Roadmap (OSD, 2009). Many of 
the programs, systems and technologies described in 
OSD’s 25-year roadmap for unmanned systems 
require the development of capabilities for 
autonomous operations for teams of these systems 
working together to execute missions. But 
developing capabilities for controlling teams of 
autonomous systems, and effectively utilizing these 
teams to achieve mission objectives, presents many 
technical challenges. 

Fortunately, some of these challenges have been 
addressed in biological systems such as colonies of 

bacteria and social insects.  In this paper we examine 
quorum sensing in biology and propose its use as a 
paradigm for implementing behavior-based control 
that is decentralized, distributed, scalable, and robust 
for teams of mobile autonomous systems. 
Additionally, we propose that quorum sensing may 
be used for ensemble decision-making tasks such as 
collective classification in distributed autonomous 
sensor platforms. 

The increasing availability of autonomous and 
unmanned vehicle platforms to military commanders 
creates opportunities for the use of autonomous 
vehicle teams to enhance situational awareness, 
decrease response times, and gain tactical advantage 
without increased risk to human life. Teams 
composed of fully autonomous systems offer 
potential to extend operational capabilities in critical 
battlespace domains including the littoral zone, 
undersea, space, on the battleground, and in other 
challenging and hazardous environments. However, 
coordinated command and control (C2) for teams of 
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autonomous systems operating in complex, dynamic, 
partially unknown and potentially hostile 
environments offers both technological hurdles as 
well as opportunities unique to each battlespace 
domain. 

In this technical effort quorum sensing is applied 
to the development of behavior-based control for a 
team of autonomous ground robots (agents) tasked 
with searching a field for buried landmines. Each 
robot is equipped with one or more sensors for 
detecting mines, such as a metal detector, 
magnetometer, or ground-penetrating radar. We 
assume that the robots have different sensor suites 
mounted on them to perform landmine detection, 
and thereby may be considered heterogeneous from 
a sensing and platform perspective. The goal is to 
implement a decentralized control strategy such the 
robots must collaborate in order to identify the 
mines, while implicitly divvying up the labor 
amongst available agents to provide efficient parallel 
search. 

2 BACKGROUND 
AND RELATED WORK 

Quorum sensing (QS) can be classified as a 
decentralized decision-making process used to 
coordinate behavior. The key characteristics of QS 
are that each individual (1) senses either directly 
(e.g. through molecular concentration) or indirectly 
(e.g. by counting the number of interactions it has 
with others of its kind) the number or density of its 
own kind present, and (2) commences a 
predetermined response, such as adopting a specific 
behavior, once the quorum decision signal is 
triggered. QS may also be part of a collective quality 
assessment process, as practiced in ants and 
honeybees in selection of new nesting sites.  In such 
cases the individuals make individual quality 
assessments and then share these assessments with 
the group. 

2.1 QS in Bacteria 

Bacteria achieve QS by detecting the density of 
other bacteria in the area, and then using this signal 
to regulate genes that in turn express behaviors (e.g. 
swimming, biofilm construction, pathogenicity). QS 
has been observed in many species of bacteria, but 
has been studied extensively in only a few including 
Vibrio fischeri, responsible for light production 
(bioluminescence) in the Hawaiian bobtail squid; in 
Escherichia coli (E. coli), which resides in the lower 

intestinal tract and is often credited with causing 
food poisoning in humans; and most extensively in 
Pseudomonas aeruginosa, where QS has been found 
to be employed in biofilm formation, swimming, and 
cell aggregation. 

Bacteria use signaling molecules called 
autoinducers to regulate QS. These molecules are 
continuously secreted and detected by the bacteria, 
forming a kind of communication network within 
the colony. Once a specific density threshold of 
autoinducer molecules is crossed, behavior changes 
are induced through changes in gene expression. 

Bacteria also communicate between species, 
using a different molecule to communicate than the 
one used within their own species (Ng, 2009). It is 
estimated that there are 10 times as many bacteria 
present in the human body as there are cells within 
the body. These bacteria, many species of which 
have not yet been identified, play an integral role in 
the proper functioning of the human body, while a 
few can cause serious and even fatal diseases. 
Identifying the chemical signaling mechanisms for 
various species of bacteria, both for signaling within 
species and between species, is an active and on-
going focus of bacteriology research (Mehta, 2009). 

2.2 QS in Ants 

While QS has been observed in a variety of social 
insects, it has been studied most extensively in 
Temnothorax albipennis and Leptothorax albipennis 
ants (Pratt, 2002). Ant colonies nest in small 
crevices between rocks, or inside small spaces inside 
sticks. When the nest is broken, scout ants fan out in 
search of a new nesting site. When a promising nest 
site is found, the scout ant assesses the quality of the 
new site, and returns to the old nest. She waits a 
period of time inversely proportional to the quality 
of the new site before recruiting nestmates to follow 
her to the new nest site, a process called tandem 
running. 

Ants perform tandem running visiting many 
candidate sites, recruiting other ants to visit the site 
they have chosen to nominate. While these site 
visits, recruiting, and tandem running are taking 
place, the ants are sensing the number of encounters 
they have with other ants. Once the number of 
encounters reaches a threshold a quorum decision is 
triggered and all of the ants return to the old nest and 
begin carrying the brood, queen, and fellow ants to 
the new nest site. 

This process represents a more aggressive form 
of QS than that employed by bacteria in that the 
individuals compete to directly influence the 
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outcome of the collective decision, selecting a new 
nesting site. The combination of individual site 
quality assessment, recruitment, and voting (by their 
presence) comprises an ensemble decision process 
that provides a means for the colony to quickly and 
efficiently find and relocate to a new nesting site. 

2.3 QS in Bees 

Honeybees (Apis mellifera) are social insects that, 
like TA ants, utilize QS to collectively evaluate and 
select new nest sites (Seeley, 2004). When a colony 
of bees becomes too large, the queen will leave the 
hive with a group of workers in order to start a new 
hive elsewhere. Once outside the nest, the workers 
form a swarm that may attach itself to a log, tree 
branch, or other convenient location where it can 
rest for a few days. A few of the scouts set off in 
search of a nest site to house the new hive. 

When a potential site has been found, the scout 
assesses the quality in terms of whether or not it is 
infested with ants, how protected it is from the 
weather, how much sunlight it receives, etc., then 
returns to the swarm and performs a waggle dance to 
recruit other bees to the site.  The number of 
repetitions of the dance is proportional to the quality 
of the site. Other scouts will fly to the potential new 
nesting site and perform their own quality 
assessments and recruiting.  Once a quorum number 
of bees has been reached at the new site they all 
return to the swarm and begin a new behavior called 
piping, causing the swarm to take off and relocate to 
the new nest site. 

Bees utilize a similar process to search for new 
food sources, including random search, assessment, 
waggle dance and recruitment. A search algorithm 
called the Bees Algorithm inspired by this process 
has been applied to a variety of combinatorial 
optimization problems including server allocation 
and job shop scheduling (Pham, 2005). 

2.4 QS in Computational Intelligence 

Quorum sensing clearly has potential for use in 
applications of computational intelligence, but it has 
surprisingly received little attention per se from the 
artificial intelligence community.  This may be due 
in part to the fact that although QS was discovered 
and studied in Vibrio fischeri in the late 1960s, for 
many years it was thought to be limited to marine 
bacteria such as Vibrio fischeri and Vibrio harveyi. 
The extent to which bacteria utilize signaling to 
achieve decentralized coordinated action was not 
appreciated until recently (Ng, 2009). 

A vibrant and expanding area of computational 
intelligence research is based on modeling the 
behavioral paradigms of social insects and applying 
them to groups or teams of autonomous man-made 
systems. Ant Colony Optimization (ACO) was 
inspired by the movement of ants in locating food 
sources, and the optimal paths they establish to 
move the food back to the colony. ACO was 
proposed by Dorigo (1992) as a search heuristic for 
finding an optimal path in a graph, and has spawned 
a class of heuristic algorithms for performing 
optimization tasks. ACO algorithms may be 
considered a subclass of stigmurgic methods 
(Bonabeau, 1998) in which agents utilize 
communication through the environment. Key 
features of ACO algorithms include the use of 
pheromones to create paths along which the ants (or 
agents) move, and the processes for strengthening 
and weakening such paths.  ACO algorithms have 
been applied to a variety of challenging optimization 
tasks including the traveling salesman problem 
(Dorigo, 1996), job shop scheduling (Merkle, 2002), 
and distributed clustering (Bonabeau, 1998). 

QS may be considered a stigmurgic method, but 
it is not an ACO algorithm since it doesn’t use 
pheromones, it doesn’t adapt agent paths to 
gradually improve its solution(s), and the focus of 
QS is emergent collaboration to achieve collective 
decisions. As such, it would be more appropriate to 
categorize QS as a method for distributed multiagent 
collaboration rather than as an optimization 
technique. 

Sahin and Franks (2002) researched the 
measurement of spaces by animals, including 
Leptothorax albipennis ants, for potential use in 
developing behaviors for autonomous mobile robots. 
While the ants they studied were utilizing QS for 
nest assessment they focused instead on the 
mechanism for nest quality assessment, specifically 
how they measured the size of the potential new 
nesting sites. In their “Future Lines of Research” 
section they discuss collective decision-making and 
quorum sensing, and suggest exploring the use of 
social behavior in complex measurements and 
decision-making. 

Wokoma (2003) proposed the use of a QS-based 
protocol to provide self-organized clustering to 
optimize communications routing in distributed 
sensor networks. They conclude that the QS-based 
protocol is more scalable than a centralized 
approach, and can adjust to changes in the 
environmental signal and network topology because 
there is no dependence on any particular node. 

Peysakhov and Regli (2005) proposed a server 
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population management scheme for wireless mobile 
ad hoc networks based upon QS, specifically 
Leptothorax albipennis ants. They implement a QS 
based protocol that automatically rebalances service 
availability on server hardware configured as a 
wireless server network.  They conclude that the 
solution exhibits properties of emergent stability, 
decentralized control, and resilience to disturbances. 

QS can be viewed as a simple form of voting, but 
it differs from voting as practiced in ensemble 
decision systems and human organizations in that in 
QS no overall tally (counting) of votes is required, 
the agents involved are necessarily mobile, and the 
quorum decision is triggered based upon a density 
threshold being exceeded. Related work in voting in 
ensemble decision systems is discussed in the next 
section. 

2.4.1 Ensemble Decision-making 

Recent advances in computational intelligence have 
produced techniques and algorithms for combining 
predictions, estimates, and decisions from multiple 
sources, such as expert systems or neural network 
models, such that the ensemble decision is at least as 
good (and often significantly better) than that of any 
one expert or model (Polikar, 2006). In human social 
affairs we routinely practice ensemble decision-
making in numerous fora including elections, jury-
trials, product reviews and rankings, medical 
treatment decisions (e.g., asking for a second or third 
opinion before surgery), talent contests, and 
scientific peer review. In the application of both 
computational intelligence and human intelligence, 
the use of ensemble decision-making allows the 
individual to benefit from the knowledge and 
experience of the group, and to thereby reduce the 
risk of making poor decisions. 

Ensemble decision systems (Polikar, 2006) have 
been developed that use a population of decision 
models to perform collective decision-making. The 
strength of this approach is that if the model errors 
are uncorrelated, then the overall ensemble decision 
will be more accurate. Such systems often apply 
voting schemes in which each classifier in the 
ensemble is given a set of inputs and “votes” on the 
classification. The votes are tallied, and a 
combination rule is applied, such as majority or 
consensus. 

Biological systems such as ant colonies and other 
social insect groups routinely demonstrate the ability 
to coordinate information and collaborate in large 
numbers to solve extremely challenging problems 
collectively, such as building a new nest with 

hundreds of complex interconnected chambers and 
passages, or carrying objects many times the size 
and weight of a single individual, despite the lack of 
any form of centralized or coordinated planning or 
control. 

The study of such biological systems has 
recently given rise to the field of Swarm Intelligence 
(Garnier, 2007), which focuses specifically on the 
emergence of intelligence through the interactions of 
a large number of individuals, with each acting 
according to its own behavioral plan. Swarm-
inspired behavior-based approaches to control of 
teams of autonomous systems offer several 
advantages over more traditional approaches (e.g., 
linearized optimal control (Robinett, 2010), 
including robustness in dynamic environments, 
decentralized and fully distributed controls, low 
computational complexity (each individual is 
executing a simple set of rules or behaviors), and 
scalability since only local interactions are 
considered (hence there is also no single point-of-
failure for the entire system). 

In related efforts for controlling teams of 
autonomous ground vehicles and teams of 
unmanned air vehicles we utilize a physics-inspired 
approach called physicomimetics (artificial physics) 
(Spears, 2004; Wiegand, 2006) where vehicles are 
modeled as particles, interactions between them are 
governed by force laws, and observation goals are 
represented by attractors. These techniques will 
allow human operators to employ teams of 
autonomous vehicles to perform missions and 
provide information to enhance situational 
awareness without increasing manning requirements 
for planning and control of the platforms. 

2.4.2 Behavior-based Autonomous Team 
Control 

In a related effort (Sofge, 2009) we are investigating 
planning and navigation for teams of underwater 
gliders to improve the accuracy of assimilative 
ocean prediction models for undersea warfare. The 
ocean environment presents numerous challenges for 
unmanned systems such as difficulty communicating 
with teammates underwater (increasing the need for 
autonomy), difficulty localizing the vehicle 
underwater and maintaining accurate positioning 
(e.g., inertial navigation systems are highly sensitive 
to drift due to currents and other ocean dynamics 
and the resultant accumulation of error), and 
difficulty controlling highly underactuated systems 
such as undersea gliders. The undersea environment 
also offers significant advantages for unmanned and 
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autonomous systems such as the low likelihood of 
colliding with other objects (other than the bottom or 
one another); stealth provided by ocean cover; 
extended stay times for passive monitoring due to 
the low energy need (since gliders use buoyancy 
control to move forward, no propellers are required); 
emerging technologies for harvesting energy from 
the ocean; and long-range propagation of acoustic 
signatures for identification. 

In other efforts we are developing an information 
theoretic approach to optimizing underwater 
distributed sensor networks (DSNs), and algorithms 
for merging bathymetric datasets (e.g., ocean floor 
profiles) that have been collected at various times by 
a variety of means including sonar arrays towed by 
survey ships, side-scan sonar collected by undersea 
vehicles, surveillance aircraft, and even space-based 
observing platforms (satellites). 

Autonomous sensor networks are under 
development or have already been put into operation 
for many purposes including weather forecasting 
and prediction (Bell, 2010); volcanic gas emissions 
monitoring (Galle, 2010); tsunami early-warning 
systems (PTWC, 2010); monitoring bridges, tunnels, 
pipelines, and other critical structures (Chebrolu, 
2008); and for monitoring networking and 
communications channels in order to detect possible 
activity by terrorists (Lawless, 2010). A key aspect 
of all of these networked systems, as well as the 
teams of autonomous systems described previously, 
is the need to coordinate information flows amongst 
the individual members of the team (or within the 
network); and to reconcile, fuse or merge, and 
integrate the various bits of information streaming in 
from disparate sources into a coherent picture for 
use by human operators. 

3 METHODOLOGY 

The goal is to demonstrate that the quorum sensing 
paradigm may provide robust decentralized 
coordination and collective decision-making for 
mobile autonomous teams performing complex 
tasks. Quorum sensing is applied to the design of a 
decentralized planner for a team of mobile 
autonomous agents surveying a field containing 
buried landmines. The key features of this approach 
are (1) each agent only interacts with its local 
environment, thus minimizing communication 
requirements and avoiding complexity (and 
bandwidth) scaling problems as the number of 
agents increases, (2) collaboration between agents is 
necessary to accomplish the task, both for collective 

decision-making and division of labor, but it is an 
emergent property (not explicit), (3) the approach is 
robust to variations in the size (and topology) of the 
field, number of targets (mines), number of agents, 
sensor performance, and quorum size. 

While QS is inspired by the behavior of social 
insects such as ants, it relies on different 
mechanisms than those employed by other artificial 
ant algorithms such as ACO (described previously), 
and QS is presented as a method to achieve 
distributed collaboration and decision-making for a 
team of agents, not as an optimization technique. 
Therefore no direct comparison of ACO and QS 
methods in performing this task was performed.  An 
ACO-based solution utilizing pheromone trails may 
exist, but that is beyond the scope of this study. 
Experiments instead focused on validating the QS 
approach. 

3.1 Operationalizing QS 

Our approach to applying QS to a target domain, 
such as a search or optimization problem involving 
multiple agents, is to first decompose the problem 
into two or more distinct phases. Each phase is 
characterized by parallel execution of agent 
behaviors, with no centralized control of the team. 

The first phase is fundamentally a parallel search 
by the agents. Each agent must be capable of 
performing a quality assessment or recognition of 
whatever is being sought. 

Next, each agent must have a mechanism for 
communicating or expressing its assessment or 
recognition. This could be communicated through 
the environment with autoinducers in bacteria, or 
communicated directly from one agent to another by 
ants and bees. Recognition functions as a voting 
mechanism in bacteria, while assessment is part of 
the recruitment process in social insects. This 
communication of assessment is the key to collective 
decision-making. 

Each agent must also have the ability to trigger 
the quorum decision (since we require a distributed, 
completely decentralized approach). The quorum 
decision must be accepted by each agent. Once the 
quorum decision state is accepted, the agent may go 
back into another state such as random-walk, or 
search, depending upon the task. 

3.2 Area Coverage 

Using a team of autonomous vehicles to search a 
field at first glance appears to be a classic area 
coverage problem. Such problems may often be 
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solved efficiently by dividing the space to be 
searched amongst the available agents, and having 
each agent assume responsibility for covering a 
specific area. 

In this application, however, this approach will 
not work since each agent requires the assistance of 
other agents carrying different sensor packages to 
confirm the identification of buried mines.  A 
Brownian-motion type random walk (with a single 
random step taken at each time step) would not 
make sense either, since the agents would spend an 
inordinate amount of time retracing their steps and 
revisiting the same places they had just visited. 

While many strategies may be devised to address 
this problem, we chose to start with a modified 
random walk, with “walk-length” determined by the 
size of the field and the number of agents. The walk-
length for the agents is determined by dividing the 
field length by the number of agents and then 
multiplying by three. For example, if the field is 
50x50, and there are 10 agents, then the walk-length 
will be 15. This gives each agent good field 
coverage, but no attempt was made to optimize 
walk-length with respect to overall team 
performance. Each agent chooses a random direction 
to move from its starting position on the grid by 
selecting a direction toward one of its 8 neighbors 
(standing still is not allowed).  For each time step 
that passes it will continue in that direction until the 
full walk-length has been covered (e.g., 15 steps). 
The agents then select another direction at random. 

3.3 The Field, Agents and Mines 

The field is implemented as a square cellular 
toroidal grid (for simplicity) such that each agent 
and each mine is located at a specific Cartesian grid 
coordinate at each point in time. Both the mines and 
the agents are randomly placed on the grid at the 
beginning of each run. The agents will move while 
the mines will remain in fixed locations throughout 
the run. 

Agents appear on the grid as small blue circles.  
The mines initially appear as small red stars. Each 
time an agent “recognizes” a mine, its star grows a 
bit larger on the field until the quorum decision 
threshold is crossed, at which point it is changed into 
a green square (Figure 1). 

3.4 Mine Detection 
and Quorum Decisions 

The QS paradigm requires that each agent must (1) 
sense the number (or density) of its own kind, and 

(2) commence a predetermined response once a 
quorum decision threshold has been crossed. Since it 
would be extremely inefficient to have all (or many) 
of the agents congregate at each mine, we decided 
that only a minimum requisite number (a quorum, by 
definition) must visit each mine and mark it as 
“recognized”. In addition, a mine can only be 
recognized by an agent once. Recognition is a 
stochastic process based upon the maximum sensing 
range (a length of 3 cells was used for the 
experiments), the accuracy of each agent (also a 
controlled parameter), and a normally distributed 
random number generated for each possible 
recognition. 

When an agent successfully recognizes a mine, 
the mine’s hit-count is incremented. If the hit-count 
exceeds the quorum threshold, the mine is 
announced as recognized and its icon is converted 
from a red star to a green square. The threshold is 
the same for all mines and agents, and the requisite 
action upon recognition (that is, a mine exceeding 
the threshold) is to announce the mine (in an actual 
real-world situation the presence and location of the 
mine would be broadcast for further investigation 
and/or remediation of the mine), and continue 
searching for other mines. Once all of the mines are 
located the simulation is stopped and the time taken 
to find all of the mines is recorded. 

3.5 Team Performance and Robustness 

The performance of each agent team is measured 
based upon the number of simulation time steps 
from initialization of landmine and agent positions 
until all landmines are recognized by a quorum of 
agents. Since the starting positions, random-walk 
process, and recognition process are stochastic, each 
experiment is repeated 100 times. The number of 
time steps required for each run is plotted versus the 
variable of interest, along with the median over all 
100 runs. 

We define robustness as the property that the 
QS-inspired search strategy will continue to function 
effectively in the presence of changes in the 
parameters such as field size, # Agents, Quorum 
Number, etc., and that team performance degrades 
gracefully with increases in task complexity (e.g. by 
increasing number of mines, or decreasing number 
of agents). To avoid undue influence by pathological 
starting conditions we calculate the 5% trimmed 
mean over each 100 runs, shown as the red lines in 
Figures 2-6. 
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Figure 1: Screen shot from Matlab simulation of quorum 
sensing-based controller showing agents (blue circles) 
searching a 50x50 toroidal grid for landmines.  There are 
10 mines on the grid and 10 agents. Hidden mines are 
shown as red stars, and recognized mines are shown as 
green squares. 

4 EXPERIMENTS 

The focus of the experiments was validation of the 
QS approach as a method to achieve distributed 
collaboration and decision-making for a team of 
agents. It is not presented as an optimization 
technique, nor is it suggested that this is the only 
distributed algorithm for accomplishing this task. 
The efficiency of this algorithm compared with other 
fully decentralized approaches is beyond the scope 
of this paper.  Instead we demonstrate the robustness 
of QS with respect to variations in the problem 
domain and resources as described. 

4.1 Expectations and Hypotheses 

Our expectations were that QS could be 
operationalized for use in decentralized, distributed 
mobile multiagent teams to address challenging 
problems in computational intelligence such as 
decentralized landmine detection using an 
autonomous multi-agent team.  We hypothesize that 
the QS-based approach will be robust to variations 
in many of the variables including: 

 field size 

 number of mines 

 number of agents 

 sensor performance 

 quorum size 

4.2 Design of Experiments 

The experiments were designed to demonstrate the 
application of QS to the mine detection task, and to 
test the hypotheses specified above. The measure of 
performance for the team was the number of 
simulation time steps until all of the mines were 
recognized (i.e., quorum number reached for every 
mine). Each experiment started by randomly 
initializing the positions of the mines and the 
positions of the agents. 

Each experiment was repeated 100 times with a 
different set of starting positions each time. The 
parameters not being varied were set at the 
following nominal values:   

 

 Field size:  50x50 # Mines: 10 
 # Agents: 10 Walk-length:  3*Field size/#Agents 
 Quorum Number:  3 Sensor Performance:  0.6 

 

Experiment 1: Test robustness of team performance 
with respect to variations in field size. 
The field was defined as an mXm unit square 
toroidal cellular grid. The value of m was varied 
from 20 to 100 in steps of 5 units. 

 

Experiment 2: Test robustness of team performance 
with respect to variation in the number of mines. 
The number of mines was varied from 5 to 25 in 
steps of size 1. 
 

Experiment 3: Test robustness of team performance 
with respect to variations in the team size (number 
of agents). 
The number of agents was varied from 5 to 25 in 
steps of size 1. 
 

Experiment 4: Test robustness of team performance 
with respect to variations in sensor accuracy. 

 

It was assumed that different sensors have different 
performance characteristics in recognizing the 
mines. The detection of a mine is modeled as a 
stochastic process in which sensor accuracy, 
distance to the mine, and random chance determine 
the outcome. For all experiments the maximum 
range for detection was set at 3 units, with the 
probability of detection decreasing with distance 
according to a normal distribution with mean zero. 
The variance of that distribution was determined by 
sensor performance parameter psense.  The nominal 
value of psense for all experiments except for 
Experiment 4 was 0.6. 

To test the robustness of team performance with 
respect to psense, the value of psense was varied 
from 0.3 to 1.0 in steps of size 0.1 

 

Experiment 5: Test robustness of team performance 
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with respect to variations in the quorum size (the 
number of hits required for a mine to be fully 
recognized by the team). 
The quorum size was varied from 2 to 5 in steps of 
size 1. 

5 RESULTS 

Figures 2-6 show the results from the Experiments. 
Each experiment was repeated 100 times. Each dot 
shows time to completion for the team for a single 
run; the line shows the 5% trimmed mean 
completion times for the team versus the varied 
parameter (shown on the x-axis) over 100 runs. 

Figure 2 shows that as the field size increases 
from 20X20 to 50X50, a 625% increase in area, the 
task completion time increases linearly at 
approximately the same rate as the increase in area. 
This shows that the QS-inspired search technique is 
robust to changes in field size. 
 

 

Figure 2: Experiment 1: Task Completion Time (y-axis) 
vs. Field Size (x-axis). 

Figure 3 shows that at the number of mines increases 
from 5 to 25, the trimmed mean task completion 
time also increases at a gradual (roughly linear) rate, 
indicating that the technique is robust to changes in 
the number of targets. 

Figure 4 shows that as the number of agents 
increases from 5 to 25, the task completion time 
decreases monotonically but non-linearly.  This is as 
expected, since the number of targets is fixed at 10, 
adding additional agents after a certain point will not 
substantially reduce the search time. This also shows 
that the technique is robust to changes in team size. 

 

Figure 3: Experiment 2: Task Completion Time (y-axis) 
vs. Number of Mines (x-axis). 

 

Figure 4: Experiment 3: Task Completion Time (y-axis) 
vs. Number of Agents (x-axis). 

 

Figure 5: Experiment 4: Task Completion Time (y-axis) 
vs. Sensor Performance (x-axis). 
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Figure 5 shows that as the sensor performance 
increases from 0.3 to 1.0, the mean task completion 
time decreases monotonically, indicating that the 
technique is robust to changes in sensor 
performance. 

 

Figure 6: Experiment 5: Task Completion Time (y-axis) 
vs. Quorum Number (x-axis). 

Figure 6 shows that as the quorum number 
increases from 2 to 5, the mean task completion time 
increases linearly and monotonically, indicating that 
the technique is robust to changes in quorum 
number, the number of collaborators needed to 
confirm a decision. 

6 CONCLUSIONS 

Quorum sensing, a decentralized decision-making 
process used by bacteria and by social insects to 
coordinate group behavior and to perform collective 
decision-making, provides a robust decentralized 
team coordination and collective decision-making 
paradigm for use in mobile autonomous teams 
performing complex tasks. In this effort a quorum 
sensing paradigm was used to develop a behavior-
based control strategy for a team of autonomous 
mobile robots given the task of surveying a field 
containing buried landmines. The quorum sensing-
based search strategy was shown to be robust to 
variations in field and team size, number of 
landmines, sensor accuracy and quorum size. 

7 FUTURE WORK 

Quorum sensing offers tremendous potential for 
design of robust decentralized control and decision-

making strategies for teams of autonomous systems 
and distributed sensing arrays. Mobile autonomous 
systems capable of collaboration may provide 
significantly enhanced capabilities for recognizing 
targets, area search, reconnaissance, and other 
critical tasks. Future efforts will focus on refining 
QS-inspired approaches to collaborative tasks for 
multi-agent teams (such as area search and collective 
recognition), implementing these methods on actual 
autonomous system hardware, and testing 
autonomous teams under real-world conditions. The 
form of quorum sensing implemented and studied in 
this effort thus far is passive, much like quorum 
sensing employed by bacterial colonies, in that the 
agents do not practice recruitment to confirm their 
classifications. A more advanced form of QS, 
Aggressive Quorum Sensing (AQS), akin to that 
employed by ants and honeybees, incorporates 
recruitment and more behavior states for the agents. 
Once an agent makes a successful recognition of a 
mine (but still below the quorum threshold), it 
begins recruiting other agents to confirm the 
recognition. This technique has the potential to 
significantly enhance the accuracy of the team on 
the mine-clearing task. We will develop AQS and 
apply it to the landmine surveying task, comparing 
the performance of the AQS-based approach with 
that of the QS-based approach described herein. 
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