to find out a reduced feature set which only com-
prises of 3 indexes, namely, the Delta index, ODI3
and the CTM50. The reduced feature set not only
lowers the computational complexity, but also enjoys
a better diagnostic ability than the existing feature
sets. Moreover, cost sensitive classifications are car-
ried out among 15 popular classifiers based on two
distinct databases, which substantiate the effective-
ness and robustness of the proposed reduced feature
set and provide guidelines of classifier selections with
the associated real-time detection strategies.
REFERENCES
Alvarez, D., Hornero, R., Ab´asolo, D., Campo, F., and Za-
marr´on, C. (2006). Nonlinear characteristics of blood
oxygen saturation from nocturnal oximetry for ob-
structive sleep apnoea detection. Physiological Mea-
surement, 27:399.
Burges, C. (1998). A tutorial on support vector machines
for pattern recognition. Data mining and knowledge
discovery, 2(2):121–167.
Burgos, A., Goni, A., Illarramendi, A., and Bermudez, J.
(2010). Real-time detection of apneas on a PDA. In-
formation Technology in Biomedicine, IEEE Transac-
tions on, 14(4):995–1002.
CinC (2000). CinC Challenge 2000 data
sets: Data for development and eval-
uation of ECG-based apnea detectors.
http://www.physionet.org/physiobank/database/apnea-
ecg/.
Goldberger, A. L., Amaral, L. A. N., Glass, L., Haus-
dorff, J. M., Ivanov, P. C., Mark, R. G., Mietus,
J. E., Moody, G. B., Peng, C.-K., and Stanley, H. E.
(2000). PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for com-
plex physiologic signals. Circulation, 101(23):e215–
e220. Circulation Electronic Pages: http://
circ.ahajournals.org/cgi/content/full/101/23/e215.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. (2009). The WEKA data mining
software: An update. ACM SIGKDD Explorations
Newsletter, 11(1):10–18.
Heneghan, C., Chua, C., Garvey, J., De Chazal, P.,
Shouldice, R., Boyle, P., and McNicholas, W. (2008).
A portable automated assessment tool for sleep ap-
nea using a combined Holter-oximeter. Sleep,
31(10):1432.
L´evy, P., P´epin, J., Deschaux-Blanc, C., Paramelle, B., and
Brambilla, C. (1996). Accuracy of oximetry for de-
tection of respiratory disturbances in sleep apnea syn-
drome. Chest, 109(2):395.
Lin, C. L., Yeh, C., Yen, C. W., Hsu, W. H., and Hang, L. W.
(2008). Comparison of the indices of oxyhemoglobin
saturation by pulse oximetry in obstructive sleep ap-
nea hypopnea syndrome. Chest, 135(1):86–93.
Magalang, U., Dmochowski, J., Veeramachaneni, S.,
Draw, A., Mador, M., El-Solh, A., and Grant,
B. (2003). Prediction of the Apnea-Hypopnea
Index From Overnight Pulse Oximetry*. Chest,
124(5):1694.
McNames, J. and Fraser, A. (2000). Obstructive sleep ap-
nea classification based on spectrogram patterns in the
electrocardiogram. Computers in Cardiology, pages
749–752.
Netzer, N., Stoohs, R., Netzer, C., Clark, K., and Strohl,
K. (1999). Using the Berlin Questionnaire to identify
patients at risk for the sleep apnea syndrome. Annals
of Internal Medicine, 131(7):485.
Ng, A., Koh, T., Baey, E., and Puvanendran, K. (2006).
Speech-like Analysis of Snore Signals for the Detec-
tion of Obstructive Sleep Apnea. In International
Conference on Biomedical and Pharmaceutical Engi-
neering, 2006. ICBPE 2006, pages 99–103. IEEE.
Oliver, N. and Flores-Mangas, F. (2006). HealthGear: a
real-time wearable system for monitoring and analyz-
ing physiological signals. Technical report, MSR-TR-
2005-182, Microsoft Corporation.
Olson, L., Ambrogetti, A., and Gyulay, S. (1999). Pre-
diction of sleep-disordered breathing by unattended
overnight oximetry. Journal of sleep research,
8(1):51–55.
Shinar, Z., Baharav, A., and Akselrod, S. (2000). Obstruc-
tive sleep apnea detection based on electrocardiogram
analysis. In Computers in Cardiology 2000, pages
757–760. IEEE.
UCD (2000). St. Vincent’s University Hospital /
University College Dublin Sleep Apnea Database.
http://www.physionet.org/pn3/ucddb/.
Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber,
S., and Badr, S. (1993). The occurrence of sleep-
disordered breathing among middle-aged adults. New
England Journal of Medicine, 328(17):1230.
Zamarr´on, C., Gude, F., Barcala, J., Rodriguez, J., and
Romero, P. (2003). Utility of Oxygen Saturation and
Heart Rate Spectral Analysis Obtained From Pulse
Oximetric Recordings in the Diagnosis of Sleep Ap-
nea Syndrome*. Chest, 123(5):1567.
AN IMPROVED APPROACH FOR REAL-TIME DETECTION OF SLEEP APNEA
175