Kisman, D., Li, M., Ma, B., and Wang, L. (2005). tPat-
ternHunter: gapped, fast and sensitive translated ho-
mology search. Bioinformatics (Oxford, England),
21(4):542–544. PMID: 15374861.
Korte, B. and Hausmann, D. (1978). An analysis of the
greedy heuristic for independence systems. Ann. Dis-
crete Math., 2:65–74.
Kucherov, G., Noe, L., and Roytberg, M. (2005). Multiseed
lossless filtration. IEEE/ACM Trans. Comput. Biol.
Bioinformatics, 2(1):51–61.
Kucherov, G., No
´
e, L., and Roytberg, M. (2006). A unify-
ing framework for seed sensitivity and its application
to subset seeds. Journal of Bioinformatics and Com-
putational Biology, 4(2):553–570.
Li, M., Ma, B., Kisman, D., and Tromp, J. (2004). Pattern-
Hunter II: Highly sensitive and fast homology search.
Journal of Bioinformatics and Computational Biol-
ogy, 2(3):417–439.
Li, T., Fan, K., and Wang, J. Wang, W. (2003). Reduction
of protein sequence complexity by residue grouping.
Protein Engineering, 16(5):323–330.
Li, W., Ma, B., and Zhang, K. (2009). Amino acid classifi-
cation and hash seeds for homology search. In BICoB,
pages 44–51.
Liang, F. M. (1983). Word hy-phen-a-tion by com-put-er.
Technical report, Departament of Computer Science,
Stanford University.
Livingstone, C. D. and Barton, G. J. (1993). Protein se-
quence alignments: a strategy for the hierarchical an
alysis of residue conservation. Computer Applications
in the Biosciences: CABIOS, 9(6):745–756. PMID:
8143162.
Ma, B., Tromp, J., and Li, M. (2002). PatternHunter: faster
and more sensitive homology search. Bioinformatics
(Oxford, England), 18(3):440–445. PMID: 11934743.
Ma, B. and Yao, H. (2008). Seed optimization is no easier
than optimal golomb ruler design. In APBC, pages
133–144.
Mitchell, M. (1996). An Introduction to Genetic Algo-
rithms. MIT Press.
Murphy, L., Wallqvist, A., and Levy, R. (2000). Simpli-
fied amino acid alphabets for protein fold recognition
and implications for folding. Protein Engineering,
13:149–152.
Neuwald, A. (1998). A probable solution to sequence-
analysis problems. Trends in Biochemical Sciences,
23(9):365–365.
Nguyen, V. H. and Lavenier, D. (2008). Speeding up subset
seed algorithm for intensive protein sequence compar-
ison. In RIVF, pages 57–63.
Noe, L. and Kucherov, G. (2005). YASS: enhancing the
sensitivity of DNA similarity search. Nucl. Acids Res.,
33(suppl 2):W540–543.
Oliveira, L., Paiva, A. C. M., and Vriend, G. (1993). A com-
mon motif in g-protein-coupled seven transmembrane
helix r eceptors. Journal of Computer-Aided Molecu-
lar Design, 7(6):649–658.
Peterlongo, P., No, L., Lavenier, D., illes Georges, G.,
Jacques, J., Kucherov, G., and Giraud, M. (2008). Pro-
tein similarity search with subset seeds on a dedicated
reco nfigurable hardware. In Parallel Processing and
Applied Mathematics, pages 1240–1248. Springer.
Ponty, Y., Termier, M., and Denise, A. (2006). GenRGenS:
software for generating random genomic sequences
and structures.
Rost, B. (1999). Twilight zone of protein sequence align-
ments. Protein Engineering Design and Selection,
12(2):85–94.
Roytberg, M., Gambin, A., No
´
e, L., Lasota, S., Furletova,
E., Szczurek, E., and Kucherov, G. (2009). On sub-
set seeds for protein alignment. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics,
6(3):483–494.
Shiryev, A. S., Papadopoulos, J. S., S chaffer, A. A., and
Agarwala, R. (2007). Improved BLAST searches us-
ing longer words for protein seedin g. Bioinformatics,
23(21):2949–2951.
Smith, T. and Waterman, M. (1981). Identification of Com-
mon Molecular Subsequences. J. Mol. Biol., 147:195–
197.
Sun, Y. and Buhler, J. (2004). Designing multiple simulta-
neous seeds for DNA similarity search. In RECOMB,
pages 76–84.
Yang, I.-H., Wang, S.-H., Chen, Y.-H., Huang, P.-H., Ye, L.,
Huang, X., and Chao, K.-M. (2004). Efficient meth-
ods for generating optimal single and multiple spaced
seeds. In BIBE ’04: Proceedings of the 4th IEEE Sym-
posium on Bioinformatics and Bioengineering, page
411, Washington, DC, USA. IEEE Computer Society.
BIOINFORMATICS 2011 - International Conference on Bioinformatics Models, Methods and Algorithms
158