Figure 1: Result of the rhythm classification.
4 CONCLUSIONS
In this work, a AF detection algorithm based on the
pulse oximeter signal is proposed. The algorithm is
based on the measure of the irregularity of the
ventricular rate during AF. The experimental
validation demonstrated both high sensitivity and
high specificity in AF and SR discrimination, so the
algorithm can precisely detect AF episodes from a
pulse oximeter device.
The high sensitivity of the algorithm, the
relatively short data required (5 minutes), and its
implementation on a microcontroller suggest that it
is possible to design an home-care device for the
accurate detection of AF episodes, based on
commercial pulse oximeters.
ACKNOWLEDGEMENTS
This research was funded by the FILAS - Regione
Lazio Grant. Authors wish to thank Engg. Boschetti,
Dieli and Pennacchietti from Medical International
Research, for providing the device for the data
collection and for the assistance in the algorithm
implementation.
REFERENCES
Naccarelli, GV., Varker, H., Lin, J., Schulman, KL., 2009.
Increasing prevalence of atrial fibrillation and flutter
in the United States. Am J Cardiol. Dec
1;104(11):1534-9.
Go, A. S., Hylek, E. M., Phillips, K. A., et al., 2001.
Prevalence of diagnosed atrial fibrillation in adults:
national implications for rhythm management and
stroke prevention: the AnTicoagulation and Risk
Factors in Atrial Fibrillation (ATRIA) Study. JAMA.
May 9;285(18):2370-5.
Kirchhof, P., 2009. Can we improve outcomes in A. F.
patients by early therapy? BMC Med. Nov 26;7:72.
Israel, C. W., 2004. Is there a role for pacing in the
prevention of atrial tachyarrhythmias? Europace.
6(5):380-3.
Rho, R. W., Page, R. L., 2005. Asymptomatic atrial
fibrillation. Prog Cardiovasc Dis.48(2):79-87.
Arya, A., Piorkowski, C., Sommer, P., Kottkamp,
H., Hindricks, G., 2007. Clinical implications of
various follow up strategies after catheter ablation of
atrial fibrillation. Pacing Clin Electrophysiol.
Apr;30(4):458-62.
Tateno, K., Glass, L., 2001. Automatic detection of atrial
fibrillation using the coefficient of variation and
density histograms of RR and delta RR intervals. Med
Biol Eng Comput. Nov;39(6):664-71.
Duverney, D., Gaspoz, J. M., Pichot, V., et al., 2002. High
accuracy of automatic detection of atrial fibrillation
using wavelet transform of heart rate intervals. Pacing
Clin Electrophysiol. 25(4 Pt 1):457-62.
Esperer, H. D., Esperer, C., Cohen, R. J., 2008. Cardiac
Arrhythmias Imprint Specific Signatures on Lorenz
Plots. Annals of Noninvasive Electrocardiology
13(1):44–60.
Hong-Wei, L., Ying, S., Min, L., Pi-Ding, L., Zheng, Z.,
2009. A probability density function method for
detecting atrial fibrillation using R-R intervals. Med
Eng Phys. 31(1):116-23.
Dash, S., Chon, K. H., Lu, S., Raeder, E. A., 2009.
Automatic real time detection of atrial fibrillation. Ann
Biomed Eng. Sep;37(9):1701-9.
Babaeizadeh, S., Gregg, R. E., Helfenbein, E. D.,
Lindauer, J. M., Zhou, S. H., 2009. Improvements in
atrial fibrillation detection for real-time monitoring. J
Electrocardiol. 42(6):522-6.
Park, J., Lee, S., Jeon, M., 2009. Atrial fibrillation
detection by heart rate variability in Poincare plot.
BioMedical Engineering OnLine 8:38.
Lu, S., Zhao, H., Ju, K., et al., 2008. Can
photoplethysmography variability serve as an
alternative approach to obtain heart rate variability
information? J Clin Monit Comput. 22(1):23-9.
Foo, J. Y., Wilson, S. J., 2006. Detection method to
minimize variability in photoplethysmographic signals
for timing-related measurement. J Med Eng Technol.
30(2):93-6.
CV
0.25 0.3 0.350.05 0.1 0.15 0.2 0.40
O = SR
O = AF
O = OTHER
4.0
2.0
1.0
1.5
3.0
3.5
0.5
EN
BIOSIGNALS 2011 - International Conference on Bio-inspired Systems and Signal Processing
432