
 
Bellman, R. E, 1961. Adaptive Control Processes. 
Princeton University Press, Princeton, NJ. 
Ben-Simon, E., Podlipsky, I., Arieli, A., Zhdanov, A., 
Hendler, T., 2008. Never resting brain: Simultaneous 
representation of two alpha related processes in 
humans. Plos One, 3 (12), e3984.  
Bentin, S., Allison, T., Puce, A., Perez, E., McCarthy, G., 
1996. Electrophysiological studies of faces perception 
in humans. Journal of Cognitive Neuroscience, 8(6), 
pp. 551-565. 
Blankertz, B., Dornhege, G., Krauledat, M., Müller, K. R., 
Curio, G., 2007. The noninvasive Berlin brain-
computer interface: fast acquisition of effective 
performance in untrained subjects. NeuroImage, 37(2), 
pp. 539–550. 
Christoforou, C., Sajda, P., Parra, L. C., 2008. Second 
order bilinear discriminant analysis for single trial 
EEG analysis. Advances in Neural Information 
Processing Systems, 20, pp. 313–320. 
Delorme, A., Makeig, S., Sejnowski, T., 2001. Automatic 
artifact rejection for EEG data using high-order 
statistics and independent component analysis. 
Proceedings of the 3rd International ICA Conference. 
Detre, G., Polyn, S. M., Moore, C., Natu, V., Singer, B., 
Cohen, J., Haxby, J. V., Norman, K. A., 2006. The 
Multi-Voxel Pattern Analysis (MVPA) Toolbox. 
Poster presented at the Annual Meeting of the 
Organization for Human Brain Mapping, Italy.  
Dornhege, G., Millán, J. del R., Hinterberger, T., 
McFarland, D., Müller, K.-R. (Eds.), 2007. Towards 
Brain-Computer Interfacing. MIT Press. 
Duda, R. O., Hart, P. E., Stork, D. G., 2001. Pattern 
Recognition 2nd edn (New York: Wiley-Interscience) 
Ekman, P., Friesen, W., 1976. Pictures of facial affect, 
Consulting Psychologists Press, Palo Alto, CA. 
Friedman, J., Hastie, T., Tibshirani, R., 2001. The 
elements of statistical learning. Springer. 
Geman, S., Bienenstock , E., 1992. Neural networks and 
the bias/variance dilemma. Neural Computation, 4 (1), 
pp. 1–58. 
Hosmer , D. W., Lemeshow, S., 1989. Applied logistic 
regression. New York: John Wiley, pp. 118-24. 
Jain, A. K., Duin, R.P.W.,Mao, J., 2000. Statistical pattern 
recognition: a review IEEE Trans. Pattern Anal. 
Mach. Intell. 22, pp.4–37 
Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T., 
Ritter, H., 2004. BCI competition 2003–data set llb: 
support vector machines for the p300 speller paradigm 
IEEE Trans. Biomed. Eng. 51, pp.1073–6. 
Kohavi, R., John, G., 1997. Wrappers for feature subset 
selection. Artificial Intelligence, 97 (1-2), pp. 273-324. 
Lal, T., Schröder, M., Hinterberger, T., Weston, J., 
Bogdan, M., Birbaumer, N., Schölkopf, B., 2004. 
Support vector channel selection in BCI. IEEE Trans. 
Biomed. Eng., 51(6), pp. 1003–1010. 
Laufs, H., Krakow. K., Sterzer. P., Eger. E., Beyerle. A., 
Salek-Haddadi. A., Kleinschmidt. A., 2003. 
Electroencephalographic signatures of attentional and 
cogntive default modes in spontaneous brain activity 
fluctuations at rest. Proceedings of the National 
Academy of Sciences, U.S.A., 100, 11053–11058. 
Lehmann, D., Skrandies, W., 1980. Reference-free 
identification of components of checkerboard-evoked 
multichannel potential fields. Electroencephalogr Clin 
Neurophysiol, 48 (6), pp. 609–621. 
Lehmann, D., Ozaki, H. and Pal, I. 1987. EEG alpha map 
series: brain microstates by space-oriented adaptive 
segmentation. Electroenceph. clin. Neurophysiol., 67 
(3), pp. 271-288.  
Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., 
Arnaldi, B., 2007. A review of classifcation algorithms 
for eeg-based brain-computer interfaces. Journal of 
Neural Engineering, 4 (2), pp. R1.R13. 
Lundqvist, D., Flykt, A., Ohman, A.,1998. The Karolinska 
Directed Emotional Faces (KDEF), Department of 
Neurosciences, Karolinska Hospital, Stockholm, UK. 
Minka, T., 2003. A Comparison of Numerical Optimizers 
for Logistic Regression. technical report, Dept. of 
Statistics, Carnegie Mellon University. 
Muller, T., Ball, T., Kristeva-Feige, R., Mergner, T., 
Timmer, J., 2000. Selecting relevant electrode 
positions for classification tasks based on the electro-
encephalogram. Medical and Biological Engineering 
and Computing, 38(1), pp. 62–67. 
Murray, M. Brunet, M., Brunet, D., Michel, C. 2008. 
Topographic ERP analyses: step-by-step tutorial 
review. Brain Topography, 20 (4), 249–269. 
Palaniappan, R., Raveendran, P., Omatu, S., 2002. VEP 
optimal channel selection using genetic algorithm for 
neural network classification of alcoholics. IEEE 
Transactions on Neural Networks, 13(2), pp. 486–491. 
Sadeh, B., Zhdanov, A., Podlipsky, I., Hendler, T., Yovel, 
G., 2008. The validity of the face-selective ERP N170 
component during simultaneous recording with 
functional MRI. Neuroimage, 42 (2), pp.778–786. 
Schröder, M., Bogdan, M., Rosenstiel, W., Hinterberger, 
T., Birbaumer, N., 2003. Automated EEG Feature 
Selection for Brain Computer Interfaces, Proceedings 
of 1st International IEEE EMBS Conference on Neural 
Engineering, Capri Island, Italy.  
Tomioka, R., Aihara, K., Müller, K. R., 2007. Logistic 
regression for single trial eeg classification. In: 
Schölkopf, B., Platt, J., Hoffman, T. (Eds.), Advances 
in Neural Information Processing Systems 19. MIT 
Press, Cambridge, MA, pp. 1377–1384. 
Tomioka, R., Müller, K. R., 2010. A regularized 
discriminative framework for EEG analysis with 
application to brain-computer interface. Neuroimage. 
49 (1), pp.415-32. 
Wolpaw, J. R., Birbaumer, N., McFarland, D. J., 
Pfurtscheller, G., Vaughan, T. M., 2002. Brain–
computer interfaces for communication and control 
Clin. Neurophysiol. 113 (6), pp. 767–91. 
Zhdanov, A., Hendler, T., Ungerleider, L., Intrator, N., 
2007. Inferring functional brain States using temporal 
evolution of regularized classifiers. Comput. Intell. 
Neurosci, p. 52609. 
BIOSIGNALS 2011 - International Conference on Bio-inspired Systems and Signal Processing
66