Bellman, R. E, 1961. Adaptive Control Processes.
Princeton University Press, Princeton, NJ.
Ben-Simon, E., Podlipsky, I., Arieli, A., Zhdanov, A.,
Hendler, T., 2008. Never resting brain: Simultaneous
representation of two alpha related processes in
humans. Plos One, 3 (12), e3984.
Bentin, S., Allison, T., Puce, A., Perez, E., McCarthy, G.,
1996. Electrophysiological studies of faces perception
in humans. Journal of Cognitive Neuroscience, 8(6),
pp. 551-565.
Blankertz, B., Dornhege, G., Krauledat, M., Müller, K. R.,
Curio, G., 2007. The noninvasive Berlin brain-
computer interface: fast acquisition of effective
performance in untrained subjects. NeuroImage, 37(2),
pp. 539–550.
Christoforou, C., Sajda, P., Parra, L. C., 2008. Second
order bilinear discriminant analysis for single trial
EEG analysis. Advances in Neural Information
Processing Systems, 20, pp. 313–320.
Delorme, A., Makeig, S., Sejnowski, T., 2001. Automatic
artifact rejection for EEG data using high-order
statistics and independent component analysis.
Proceedings of the 3rd International ICA Conference.
Detre, G., Polyn, S. M., Moore, C., Natu, V., Singer, B.,
Cohen, J., Haxby, J. V., Norman, K. A., 2006. The
Multi-Voxel Pattern Analysis (MVPA) Toolbox.
Poster presented at the Annual Meeting of the
Organization for Human Brain Mapping, Italy.
Dornhege, G., Millán, J. del R., Hinterberger, T.,
McFarland, D., Müller, K.-R. (Eds.), 2007. Towards
Brain-Computer Interfacing. MIT Press.
Duda, R. O., Hart, P. E., Stork, D. G., 2001. Pattern
Recognition 2nd edn (New York: Wiley-Interscience)
Ekman, P., Friesen, W., 1976. Pictures of facial affect,
Consulting Psychologists Press, Palo Alto, CA.
Friedman, J., Hastie, T., Tibshirani, R., 2001. The
elements of statistical learning. Springer.
Geman, S., Bienenstock , E., 1992. Neural networks and
the bias/variance dilemma. Neural Computation, 4 (1),
pp. 1–58.
Hosmer , D. W., Lemeshow, S., 1989. Applied logistic
regression. New York: John Wiley, pp. 118-24.
Jain, A. K., Duin, R.P.W.,Mao, J., 2000. Statistical pattern
recognition: a review IEEE Trans. Pattern Anal.
Mach. Intell. 22, pp.4–37
Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T.,
Ritter, H., 2004. BCI competition 2003–data set llb:
support vector machines for the p300 speller paradigm
IEEE Trans. Biomed. Eng. 51, pp.1073–6.
Kohavi, R., John, G., 1997. Wrappers for feature subset
selection. Artificial Intelligence, 97 (1-2), pp. 273-324.
Lal, T., Schröder, M., Hinterberger, T., Weston, J.,
Bogdan, M., Birbaumer, N., Schölkopf, B., 2004.
Support vector channel selection in BCI. IEEE Trans.
Biomed. Eng., 51(6), pp. 1003–1010.
Laufs, H., Krakow. K., Sterzer. P., Eger. E., Beyerle. A.,
Salek-Haddadi. A., Kleinschmidt. A., 2003.
Electroencephalographic signatures of attentional and
cogntive default modes in spontaneous brain activity
fluctuations at rest. Proceedings of the National
Academy of Sciences, U.S.A., 100, 11053–11058.
Lehmann, D., Skrandies, W., 1980. Reference-free
identification of components of checkerboard-evoked
multichannel potential fields. Electroencephalogr Clin
Neurophysiol, 48 (6), pp. 609–621.
Lehmann, D., Ozaki, H. and Pal, I. 1987. EEG alpha map
series: brain microstates by space-oriented adaptive
segmentation. Electroenceph. clin. Neurophysiol., 67
(3), pp. 271-288.
Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F.,
Arnaldi, B., 2007. A review of classifcation algorithms
for eeg-based brain-computer interfaces. Journal of
Neural Engineering, 4 (2), pp. R1.R13.
Lundqvist, D., Flykt, A., Ohman, A.,1998. The Karolinska
Directed Emotional Faces (KDEF), Department of
Neurosciences, Karolinska Hospital, Stockholm, UK.
Minka, T., 2003. A Comparison of Numerical Optimizers
for Logistic Regression. technical report, Dept. of
Statistics, Carnegie Mellon University.
Muller, T., Ball, T., Kristeva-Feige, R., Mergner, T.,
Timmer, J., 2000. Selecting relevant electrode
positions for classification tasks based on the electro-
encephalogram. Medical and Biological Engineering
and Computing, 38(1), pp. 62–67.
Murray, M. Brunet, M., Brunet, D., Michel, C. 2008.
Topographic ERP analyses: step-by-step tutorial
review. Brain Topography, 20 (4), 249–269.
Palaniappan, R., Raveendran, P., Omatu, S., 2002. VEP
optimal channel selection using genetic algorithm for
neural network classification of alcoholics. IEEE
Transactions on Neural Networks, 13(2), pp. 486–491.
Sadeh, B., Zhdanov, A., Podlipsky, I., Hendler, T., Yovel,
G., 2008. The validity of the face-selective ERP N170
component during simultaneous recording with
functional MRI. Neuroimage, 42 (2), pp.778–786.
Schröder, M., Bogdan, M., Rosenstiel, W., Hinterberger,
T., Birbaumer, N., 2003. Automated EEG Feature
Selection for Brain Computer Interfaces, Proceedings
of 1st International IEEE EMBS Conference on Neural
Engineering, Capri Island, Italy.
Tomioka, R., Aihara, K., Müller, K. R., 2007. Logistic
regression for single trial eeg classification. In:
Schölkopf, B., Platt, J., Hoffman, T. (Eds.), Advances
in Neural Information Processing Systems 19. MIT
Press, Cambridge, MA, pp. 1377–1384.
Tomioka, R., Müller, K. R., 2010. A regularized
discriminative framework for EEG analysis with
application to brain-computer interface. Neuroimage.
49 (1), pp.415-32.
Wolpaw, J. R., Birbaumer, N., McFarland, D. J.,
Pfurtscheller, G., Vaughan, T. M., 2002. Brain–
computer interfaces for communication and control
Clin. Neurophysiol. 113 (6), pp. 767–91.
Zhdanov, A., Hendler, T., Ungerleider, L., Intrator, N.,
2007. Inferring functional brain States using temporal
evolution of regularized classifiers. Comput. Intell.
Neurosci, p. 52609.
BIOSIGNALS 2011 - International Conference on Bio-inspired Systems and Signal Processing
66