size of the vector to be processed, and this makes it
suitable also for real-time applications. Simulation
results confirm the effectiveness of the approach and
highlight a remarkable ability to smooth and denoise
P-waves.
Eventually, it is worthwhile noting that the pro-
posed algorithm can be effectively applied to a wider
range of signals, e.g., whole ECG or EEG tracings,
whenever smoothing and/or denoising are needed.
REFERENCES
Bayes de Luna, A., Guindo, J., Vinolas, X., Martinez-
Rubio, A., Oter, R., and Bayes-Genis, A. (1999).
Third-degree inter-atrial block and supraventricular
tachyarrhythmias. Europace, 1:43–46.
Benjamin, E. J., Wolf, P. A., D’Agostino, R. B., Silbershatz,
H., Kannel, W. B., and Levy, D. (1998). Impact of
atrial fibrillation on the risk of death: the Framingham
Heart Study. Circulation, 98:946–952.
Boyd, S. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge University Press.
Carlson, J., Johansson, R., and Olsson, S. B. (2001). Classi-
fication of electrocardiographic P-wave morphology.
IEEE Trans Biomed Eng, 48:401–405.
Censi, F., Calcagnini, G., Ricci, C., Ricci, R. P., Santini,
M., Grammatico, A., and Bartolini, P. (2007). P-
wave morphology assessment by a gaussian functions-
based model in atrial fibrillation patients. IEEE Trans
Biomed Eng, 54:663–672.
Censi, F., Ricci, C., Calcagnini, G., Triventi, M., Ricci,
R. P., Santini, M., and Bartolini, P. (2008). Time-
domain and morphological analysis of the P-wave.
Part I: Technical aspects for automatic quantifica-
tion of P-wave features. Pacing Clin Electrophysiol,
31:874–883.
Clifford, G. D., Azuaje, F., and McSharry, P. (2006). Ad-
vanced Methods And Tools for ECG Data Analysis.
Artech House, Inc., Norwood, MA, USA.
Dilaveris, P. E. and Gialafos, J. E. (2002). Future concepts
in P wave morphological analyses. Card Electrophys-
iol Rev, 6:221–224.
Feinberg, W. M., Blackshear, J. L., Laupacis, A., Kron-
mal, R., and Hart, R. G. (1995). Prevalence, age
distribution, and gender of patients with atrial fibril-
lation. Analysis and implications. Arch. Intern. Med.,
155:469–473.
Go, A. S., Hylek, E. M., Phillips, K. A., Chang, Y., Henault,
L. E., Selby, J. V., and Singer, D. E. (2001). Preva-
lence of diagnosed atrial fibrillation in adults: na-
tional implications for rhythm management and stroke
prevention: the AnTicoagulation and Risk Factors in
Atrial Fibrillation (ATRIA) Study. JAMA, 285:2370–
2375.
Golub, G. H. and Van Loan, C. F. (1996). Matrix compu-
tations. Johns Hopkins University Press, Baltimore,
MD, USA, 3 edition.
Horn, R. A. and Johnson, C. R. (1990). Matrix Analysis.
Cambridge University Press.
McBride, D., Mattenklotz, A. M., Willich, S. N., and
Bruggenjurgen, B. (2008). The Costs of Care in Atrial
Fibrillation and the Effect of Treatment Modalities in
Germany. Value Health.
Nattel, S., Burstein, B., and Dobrev, D. (2008). Atrial re-
modeling and atrial fibrillation: mechanisms and im-
plications. Circ Arrhythm Electrophysiol, 1(1):62–73.
Oppenheim, A. V., Schafer, R. W., and Buck, J. R. (1999).
Discrete-time signal processing (2nd ed.). Prentice-
Hall, Inc.
Perez, M. V., Dewey, F. E., Marcus, R., Ashley, E. A.,
Al-Ahmad, A. A., Wang, P. J., and Froelicher, V. F.
(2009). Electrocardiographic predictors of atrial fib-
rillation. Am. Heart J., 158:622–628.
Platonov, P. G., Carlson, J., Ingemansson, M. P., Roijer,
A., Hansson, A., Chireikin, L. V., and Olsson, S. B.
(2000). Detection of inter-atrial conduction defects
with unfiltered signal-averaged P-wave ECG in pa-
tients with lone atrial fibrillation. Europace, 2:32–41.
Shreve, S. E. (2004). Stochastic Calculus for Finance II:
Continuous-Time Models. Springer Finance. Springer
Science+Business Media, Inc.
BIOSIGNALS 2011 - International Conference on Bio-inspired Systems and Signal Processing
294