much greater number of equations and variables.
Our aim is to extend our investigations to more
complex reactions, governing the cell function-
ing. In fact, it is well known that the mathe-
matical description of the double phosphorylation–
dephosphorylation mechanism is a common feature
not only of the MAPK but of any reaction involving a
double-step activation and the corresponding double-
step deactivation. Even if we expect, in general, much
more involved phenomena, we think that our mathe-
matical tools will be able to model, explain and pre-
dict their main characteristics.
The results that we present in this paper do need,
of course, a validation through experimental data. For
this purpose, we have got off the ground a collabora-
tion with personnel from ISMAC–CNR, the Institute
for Macromolecular studies (Genova,Italy), in order
to test our predictions.
REFERENCES
Bisswanger, H. (2002). Enzyme Kinetics. Principles and
Methods. Wiley-VCH.
Bluthgen, N., Bruggeman, F. J., Legewie, S., Herzel, H.,
Westerhoff, H. V., and Kholodenko, B. N. (2006). Ef-
fects of sequestration on signal transduction cascades.
FEBS J., 273:895–906.
Borghans, J., de Boer, R., and Segel, L. (1996). Extend-
ing the quasi-steady state approximation by changing
variables. Bull. Math. Biol., 58:43–63.
Briggs, G. E. and Haldane, J. B. S. (1925). A note on the
kinetics of enzyme action. Biochem. J., 19:338–339.
Camps, M., Nichols, A., and Arkinstall, S. (2000). Dual
specificity phosphatases: a gene family for control of
map kinase function. FASEB J., 14:6–16.
Chickarmane, V., Kholodenko, B. N., and Sauro, H. M.
(2007). Oscillatory dynamics arising from competi-
tive inhibition and multisite phosphorylation. J. Theor.
Biol., 244:68–76.
Ciliberto, A., Capuani, F., and Tyson, J. J. (2007). Model-
ing networks of coupled anzymatic reactions using the
total quasi-steady state approximation. PLoS Comput.
Biol., 3:463–472.
Flach, E. H. and Schnell, S. (2006). Use and abuse of the
quasi-steady-state approximation. IEE Proceed. Syst.
Biol., 153:187–191.
Goldbeter, A. and Koshland, D. E. (1981). An amplified
sensitivity arising from covalent modification in bio-
logical system. Proc Natl Acad Sci, 78:6840–6844.
Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yu-
moto, N., Ichikawa, M., Kim, J. H., Saito, K., Saeki,
K. M., Shirouzu, M., Yokoyama, S., and Konagaya, A.
(2003). A computational model on the modulation of
mitogen-activated protein kinase (mapk) and akt path-
ways in heregulin-induced erbb signalling. Biochem.
J., 373:451–463.
Henri, V. (1901a). Recherches sur la loi de l’action de la
sucrase. C. R. Hebd. Acad. Sci., 133:891–899.
Henri, V. (1901b).
¨
Uber das gesetz der wirkung des in-
vertins. Z. Phys. Chem., 39:194–216.
Kholodenko, B. N. (2000). Negative feedback and ultra-
sensitivity can bring about oscillations in the mitogen-
activated protein kinase cascades. Eur. J. Biochem.,
267:1583–1588.
Laidler, K. J. (1955). Theory of the transient phase in kinet-
ics, with special reference to enzyme systems. Can. J.
Chem., 33:1614–1624.
Legewie, S., Schoeberl, B., N., B., and Herzel, H. (2007).
Competing docking interactions can bring about bista-
bility in the mapk cascade. Biophys. J., 93:2279–
2288.
Markevich, N. I., Hoek, J. B., and B.N., K. (2004). Sig-
naling switches and bistability arising from multisite
phosphorylation in protein kinase cascades. J. Cell
Biol., 164:353–359.
Michaelis, L. and Menten, M. L. (1913). Die kinetik der
invertinwirkung. Biochem. Z., 49:333–339.
Ortega, F., Garces, J. L., Mas, F., Kholodenko, B. N., and
Cascante, M. (2006). Bistability from double phos-
phorylation in signal transduction. kinetic and struc-
tural requirements. FEBS J., 273:3915–3926.
Pedersen, M. and Bersani, A. M. (2010). The total quasi-
steady state approximation simplifies theoretical anal-
ysis at non-negligible enzyme concentrations: Pseudo
first-order kinetics and the loss of zero-order ultrasen-
sitivity. J. Math. Biol., 60:267–283.
Pedersen, M. G., Bersani, A. M., and Bersani, E. (2008).
Steady-state approximations in intracellular signal
transduction – a word of caution. J. Math. Chem.,
43:1318–1344.
Sabouri-Ghomi, M., Ciliberto, A., Kar, S., Novak, B., and
Tyson, J. J. (2008). Antagonism and bistability in pro-
tein interaction networks. J. Theor. Biol., 250:209–
218.
Salazar, C. and Hofer, T. (2006). Kinetic models of phos-
phorylation cycles: A systematic approach using the
rapid equilibrium approximation for protein-protein
interactions. Biosystems, 83:195–206.
Segel, L. (1988). On the validity of the steady state assump-
tion of enzyme kinetics. Bull. Math. Biol., 50:579–
593.
Segel, L. A. and Slemrod, M. (1989). The quasi steady-state
assumption: a case study in perturbation. Siam Rev.,
31:446–477.
Sols, A. and Marco, R. (1970). Concentrations of metabo-
lites and binding sites, implications in metabolic reg-
ulation. Curr. Top. Cell. Regul., 2:227–273.
Straus, O. H. and Goldstein, A. (1943). Zone behavior of
enzymes. J. Gen. Physiol., 26:559–585.
Tzafriri, A. R. (2003). Michaelis-Menten kinetics at high
enzyme concentrations. Bull. Math. Biol., 65:1111–
1129.
BIOINFORMATICS 2011 - International Conference on Bioinformatics Models, Methods and Algorithms
64