Algorithm, that is initialized in two different ways:
a greedy (Nearest Neighbor) and a TSP-based ap-
proach. The importance of this work is to provide
a team of agents the ability to plan a common set of
strategies, the Team Plan, by sharing in an optimal
way a set of given targets/goals.
The results presented here show the success of the
approach, demonstrating how a simple method can
solve otherwise hard combinatorial problems.
REFERENCES
Ali, A. I. and Kennington, J. L. (1986). The asymmetric m-
traveling salesman problem: a duality based branch-
and-bound algorithm. Discrete Applied Mathematics,
13(2-3):259–276.
Balas, E. and Toth, P. (1985). Branch and bound methods.
In Lawler, E. L., Lenstra, J., Rinnooy Kart, A. H. G.,
and Shmoys, D. B., editors, The Traveling Salesman
Problem, chapter 10, pages 361–397. New York, John
Wiley and Sons edition.
Baumgartner, E. T. (2000). In-situ exploration of Mars us-
ing rover systems. In Proceedings of the AIAA Space
2000 Conference, number 2000-5062, Long Beach,
CA, USA. AIAA.
Bektas, T. (2006). The Multiple Traveling Salesman Prob-
lem: an overview of formulations and solution proce-
dures. Omega (Oxford), 34(3):209–219.
Bellmore, M. and Hong, S. (1974). Transformation of Mul-
tisalesman Problem to the standard Traveling Sales-
man Problem. Journal of the ACM, 21(3):500–504.
Bentley, J. L. (1990). Experiments on Traveling Salesman
heuristics. In Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 91–
99, Philadelphia, PA, USA. Society for Industrial and
Applied Mathematics.
Birk, A. and Carpin, S. (2006). Rescue robotics - A crucial
milestone on the road to autonomous systems. Ad-
vanced Robotics, 20(5):595–605.
Bondy, J. and Murty, U. (1976). Graph Theory with appli-
cations. Macmillan London.
Brown, E. C., Ragsdale, C. T., and Carter, A. E. (2007).
A grouping Genetic Algorithm for the Multiple Trav-
eling Salesperson Problem. International Journal
of Information Technology and Decision Making,
6(2):333–347.
Carpin, S., Wang, J., Lewis, M., Birk, A., and Jacoff, A.
(2006). High fidelity tools for rescue robotics: re-
sults and perspectives. RoboCup 2005: Robot Soccer
World Cup IX, 4020:301–311.
Carter, A. E. (2003). Design and application of Genetic Al-
gorithms for the Multiple Traveling Salesperson As-
signment Problem. PhD thesis, Department of Man-
agement Science and Information Technology, Vir-
ginia Polytechnic Institute and State University.
Carter, A. E. and Ragsdale, C. T. (2002). Scheduling pre-
printed newspaper advertising inserts using genetic al-
gorithms. Omega, 30(6):415–421.
Carter, A. E. and Ragsdale, C. T. (2006). A new approach to
solving the Multiple Travelling Salesperson Problem
using Genetic Algorithms. European Journal Opera-
tional Research, 175(1):246–257.
Diestel, R. (2005). Graph Theory. Springer.
Gavish, B. and Srikanth, K. (1986). An optimal solution
method for large-scale Multiple Traveling Salesmen
Problems. Operations Research, 34(5):698–717.
Giardini, G. and Kalm´ar-Nagy, T. (2007). Centralized and
distributed path planning for Multi-Agent exploration.
In AIAA 2007, Conference of Guidance, Navigation
and Control.
Goldberg, D. E. (1989). Genetic Algorithms in search, op-
timization, and machine learning. Addison-Wesley
Professional, Boston, MA, USA.
Gorenstein, S. (1970). Printing Press Scheduling for
Multi-Edition Periodicals. Management Science,
16(6):B373–B383.
Gutin, G. and Punnen, A. (2002). The Traveling Salesman
Problem and its variations, volume 12 of Combina-
torial Optimizations. Kluwer Academic Publishers,
Norwell, MA, Springer edition.
Hayati, S., Volpe, R., Backes, P., Balaram, J., Welch, R.,
Ivlev, R., Tharp, G., Peters, S., Ohm, T., Petras, R.,
and Laubach, S. (1997). The Rocky 7 rover: a Mars
sciencecraft prototype. In IEEE International Confer-
ence on Robotics and Automation, volume 3, pages
2458–2464, Albuquerque.
Hong, S. and Padberg, M. (1977). A note on the Symmet-
ric Multiple Traveling Salesman Problem with fixed
charges. Operations Research, 25(5):871–874.
http://marsrovers.nasa.gov. Mars Exploration Rover mis-
sions.
http://neo.lcc.uma.es/radi aeb/WebVRP/. The VRP Web.
http://www.tsp.gatech.edu/. Traveling Salesman Problem.
Jacoff, A., Messina, E., and Evans, J. (2002). Experi-
ences in deploying test arenas for autonomous mobile
robots. NIST Special Publication, pages 87–94.
Johnson, D. S. and McGeoch, L. A. (1997). The Traveling
Salesman Problem: a case study in local optimization.
Local Search in Combinatorial Optimization, pages
215–310.
Junjie, P. and Dingwei, W. (2006). An Ant Colony Op-
timization Algorithm for Multiple Travelling Sales-
man Problem. In Proceedings of the First Interna-
tional Conference on Innovative Computing, Informa-
tion and Control, pages 210–213, Washington, DC,
USA. IEEE Computer Society.
Kara, I. and Bektas, T. (2006). Integer linear program-
ming formulations of multiple salesman problems and
its variations. European Journal of Operational Re-
search, 174(3):1449–1458.
Kulich, M., Kubalik, J., Klema, J., and Faigl, J. (2004). Res-
cue operation planning by soft computing techniques.
ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence
304