Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984).
Classification and Regression Trees. Wadsworth Inter-
national Group, Belmont, CA.
Chu, F. and Zaniolo, C. (2004). Fast and light boosting for
adaptive mining of data streams. In Proceedings of the
8th Pacific-Asia Conference Advances in Knowledge
Discovery and Data Mining (PAKDD’04), pages 282–
292, Sydney, Australia.
Cohen, L., Avrahami, G., Last, M., and Kandel, A.
(2008). Info-fuzzy algorithms for mining dynamic
data streams. Applied Soft Computing, 8(4):1283–
1294.
Domingos, P. and Hulten, G. (2000). Mining high-speed
data streams. In Proceedings of the 6th International
Conference on Knowledge Discovery and Data Min-
ing (KDD’00), pages 71–80, Boston. MA.
Domingos, P. and Hulten, G. (2001). A general method
for scaling up machine learning algorithms and its
application to clustering. In Proceedings of the
18th International Conference on Machine Learning
(ICML’01), pages 106–113, Williamstown, MA.
Folino, G., Pizzuti, C., and Spezzano, G. (2007). Mining
distributed evolving data streams using fractal gp en-
sembles. In Proceedings of the 10th European Confer-
ence Genetic Programming (EuroGP’07), pages 160–
169, Valencia, Spain.
Gaber, M. M., Zaslavsky, A., and Krishnaswamy, S. (2005).
Mining data streams: a review. ACM SIGMOD
Records, 34(2):18–26.
Gama, J., Fernandes, R., and Rocha, R. (2006). Decision
trees for mining data streams. Intelligent Data Analy-
sis, 10(1):23–45.
Gama, J., Medas, P., Castillo, G., and Rodrigues, P. (2004).
Learning with drift detection. In SBIA Brazilian Sym-
posium on Artificial Intelligence, pages 286–295.
Gama, J. and Pinto, C. (2006). Discretization from data
streams: applications to histograms and data min-
ing. In Proceedings of the 2006 ACM symposium on
Applied computing (SAC’06), pages 662–667, Dijon,
France.
Gilbert, A., Guha, S., Indyk, P., Kotidis, Y., Muthukrish-
nan, S., and Strauss, M. (2002). Fast, small-space
algorithms for approximate histogram maintenance.
In Proceedings of the 2002 Annual ACM Symposium
on Theory of Computing (STOC’02), pages 389–398,
Montreal, Quebec, Canada.
Grossi, V. (2009). A New Framework for Data Streams
Classification. PhD thesis, Supervisor Prof. Franco
Turini, University of Pisa.
Grossi, V. and Turini, F. (2010). A new selective ensemble
approach for data streams classification. In Proceed-
ings of the 2010 International Conference in Artificial
Intelligence and Applications (AIA’2010), pages 339–
346, Innsbruck, Austria.
Guha, S., Koudas, N., and Shim, K. (2001). Data-
streams and histograms. In Proceedings of the 2001
Annual ACM Symposium on Theory of Computing
(STOC’01), pages 471–475, Heraklion, Crete, Greece.
Hulten, G., Spencer, L., and Domingos, P. (2001). Min-
ing time changing data streams. In Proceedings of the
7th International Conference on Knowledge Discov-
ery and Data Mining (KDD’01), pages 97–106, San
Francisco, CA.
Klinkenberg, R. (2004). Learning drifting concepts: Exam-
ple selection vs. example weighting. Intelligent Data
Analysis, 8:281–300.
Kolter, J. Z. and Maloof, M. A. (2005). Using additive ex-
pert ensembles to cope with concept drift. In Proceed-
ings of the 22nd International Conference on Machine
learning (ICML’05), pages 449–456, Bonn, Germany.
Kolter, J. Z. and Maloof, M. A. (2007). Dynamic weighted
majority: An ensemble method for drifting concepts.
Journal of Machine Learning Research, 8:2755–2790.
Lin, X. and Zhang, Y. (2008). Aggregate computation
over data streams. In Procedings of the 10th Asia
Pacific Web Conference (APWeb’08), pages 10–25,
Shenyang, China.
Oza, N. C. and Russell, S. (2001). Online bagging and
boosting. In Proceedings of 8th International Work-
shop on Artificial Intelligence and Statistics (AIS-
TATS’01), pages 105–112, Key West, FL.
Pfahringer, B., Holmes, G., and Kirkby, R. (2008). Han-
dling numeric attributes in hoeffding trees. In
Proceeding of the 2008 Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD’08),
pages 296–307, Osaka, Japan.
Schlimmer, J. C. and Granger, R. H. (1986). Beyond in-
cremental processing: Tracking concept drift. In Pro-
ceedings of the 5th National Conference on Artificial
Intelligence, pages 502–507, Menlo Park, CA.
Scholz, M. and Klinkenberg, R. (2005). An ensemble
classifier for drifting concepts. In Proceeding of
2nd International Workshop on Knowledge Discovery
from Data Streams, in conjunction with ECML-PKDD
2005, pages 53–64, Porto, Portugal.
Street, W. N. and Kim, Y. (2001). A streaming ensem-
ble algorithm (SEA) for large-scale classification. In
Proceedings of the 7th International Conference on
Knowledge Discovery and Data Mining (KDD’01),
pages 377–382, San Francisco, CA.
The University of Waikato. MOA: Mas-
sive Online Analysis, August 2009.
http://www.cs.waikato.ac.nz/ml/moa.
The University of Waikato. Weka 3: Data
Mining Software in Java, Version 3.6.
http://www.cs.waikato.ac.nz/ml/weka.
Wang, H., Fan, W., Yu, P. S., and Han, J. (2003). Mining
concept-drifting data streams using ensemble classi-
fiers. In Proceedings of the 9th International Con-
ference on Knowledge Discovery and Data Mining
(KDD’03), pages 226–235, Washington, DC.
AN ADAPTIVE SELECTIVE ENSEMBLE FOR DATA STREAMS CLASSIFICATION
145