Finally, we defined a novel kNN classifier that first
assigns a label to each local feature of an image and
then label the whole image by considering the labels
and the confidences assigned to its local features.
The experiments showed that our proposed lo-
cal features based classification approach outperforms
the standard image similarity kNN approach in com-
bination with any of the defined image similarity
functions, even the ones considering geometric con-
strains.
ACKNOWLEDGEMENTS
This work was partially supported by the VISITO
Tuscany project, funded by Regione Toscana, in the
POR FESR 2007-2013 program, action line 1.1.d, and
the MOTUS project, funded by the Industria 2015
program.
REFERENCES
Amato, G., Falchi, F., and Bolettieri, P. (2010). Recog-
nizing landmarks using automated classification tech-
niques: an evaluation of various visual features. In in
Proceeding of The Second Interantional Conference
on Advances in Multimedia (MMEDIA 2010), Athens,
Greece, 13-19 June 2010, pages 78–83. IEEE Com-
puter Society.
Ballard, D. H. (1981). Generalizing the hough trans-
form to detect arbitrary shapes. Pattern Recognition,
13(2):111–122.
Batko, M., Novak, D., Falchi, F., and Zezula, P.
(2008). Scalability comparison of peer-to-peer sim-
ilarity search structures. Future Generation Comp.
Syst., 24(8):834–848.
Bay, H., Tuytelaars, T., and Gool, L. J. V. (2006). Surf:
Speeded up robust features. In ECCV (1), pages 404–
417.
Boiman, O., Shechtman, E., and Irani, M. (2008). In de-
fense of nearest-neighbor based image classification.
In CVPR.
Chen, T., Wu, K., Yap, K.-H., Li, Z., and Tsai, F. S. (2009).
A survey on mobile landmark recognition for informa-
tion retrieval. In MDM ’09: Proceedings of the 2009
Tenth International Conference on Mobile Data Man-
agement: Systems, Services and Middleware, pages
625–630, Washington, DC, USA. IEEE Computer So-
ciety.
Dudani, S. (1975). The distance-weighted k-nearest-
neighbour rule. IEEE Transactions on Systems, Man
and Cybernetics, SMC-6(4):325–327.
Fagni, T., Falchi, F., and Sebastiani, F. (2010). Image classi-
fication via adaptive ensembles of descriptor-specific
classifiers. Pattern Recognition and Image Analysis,
20:21–28.
Falchi, F. (2010). Pisa landmarks dataset.
http://www.fabriziofalchi.it/pisaDataset/. last ac-
cessed on 30-March-2010.
Google (2010). Google Goggles. http://www.google.com/
mobile/goggles/. last accessed on 30-March-2010.
J
´
egou, H., Douze, M., and Schmid, C. (2010). Improving
bag-of-features for large scale image search. Int. J.
Comput. Vision, 87(3):316–336.
Kennedy, L. S. and Naaman, M. (2008). Generating diverse
and representative image search results for landmarks.
In WWW ’08: Proceeding of the 17th international
conference on World Wide Web, pages 297–306, New
York, NY, USA. ACM.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60(2):91–110.
Samet, H. (2005). Foundations of Multidimensional and
Metric Data Structures. Computer Graphics and Geo-
metric Modeling. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.
Serdyukov, P., Murdock, V., and van Zwol, R. (2009). Plac-
ing flickr photos on a map. In Allan, J., Aslam, J. A.,
Sanderson, M., Zhai, C., and Zobel, J., editors, SIGIR,
pages 484–491. ACM.
Yeh, T., Tollmar, K., and Darrell, T. (2004). Searching the
web with mobile images for location recognition. In
CVPR (2), pages 76–81.
Zezula, P., Amato, G., Dohnal, V., and Batko, M. (2006).
Similarity Search: The Metric Space Approach, vol-
ume 32 of Advances in Database Systems. Springer-
Verlag.
Zheng, Y., 0003, M. Z., Song, Y., Adam, H., Buddemeier,
U., Bissacco, A., Brucher, F., Chua, T.-S., and Neven,
H. (2009). Tour the world: Building a web-scale land-
mark recognition engine. In CVPR, pages 1085–1092.
IEEE.
ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence
166