ACKNOWLEDGEMENTS
The content of this paper is a partial result of the As-
sistSim project (Hessen Agentur Project No.: 185/09-
15) which is funded by the European Union (Euro-
pean Regional Development Fund - ERDF) as well
as the German State Hesse in context of the Hessen
ModellProjekte. We would like to thank our Assist-
Sim project partners for interesting discussions on the
automation of simulation experiments.
REFERENCES
Bianchi, L., Dorigo, M., Gambardella, L. M., and Gutjahr,
W. J. (2009). A survey on metaheuristics for stochastic
combinatorial optimization. Natural Computing: an
international journal, 8(2):239–287.
Burl, M. C., DeCoste, D., Enke, B. L., Mazzoni, D., Mer-
line, W. J., and Scharenbroich, L. (2006). Automated
knowledge discovery from simulators. In Ghosh,
J., Lambert, D., Skillicorn, D. B., and Srivastava,
J., editors, Proceedings of the Sixth SIAM Interna-
tional Conference on Data Mining, April 20-22, 2006,
Bethesda, MD, USA.
Ekren, B. Y. and Heragu, S. S. (2008). Simulation based
optimization of multi-location transshipment problem
with capacitated transportation. In WSC ’08: Pro-
ceedings of the 40th Conference on Winter Simulation,
pages 2632–2638. Winter Simulation Conference.
Hoad, K., Robinson, S., and Davies, R. (2009). Automated
selection of the number of replications for a discrete-
event simulation. Journal of the Operational Research
Society.
Huber, K.-P., Syrjakow, M., and Szczerbicka, H. (1993).
Extracting knowledge supports model optimization.
In Proceedings of the International Simulation Tech-
nology Conference SIMTEC’93, pages 237–242, San
Francisco.
James, H. A., Hawick, K. A., and Scogings, C. J. (2007).
User-friendly scheduling tools for large-scale simula-
tion experiments. In WSC ’07: Proceedings of the
39th conference on Winter simulation, pages 610–616,
Piscataway, NJ, USA. IEEE Press.
King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey,
W., Byrne, E., Liakata, M., Markham, M., Pir, P.,
Soldatova, L. N., Sparkes, A., Whelan, K. E., and
Clare, A. (2009). The automation of science. Science,
324(5923):85–89.
King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G. K.,
Bryant, C. H., Muggleton, S. H., Kell, D. B., and
Oliver, S. G. (2004). Functional genomic hypothesis
generation and experimentation by a robot scientist.
Nature, 427:247–252.
Kl
¨
osgen, W. (1994). Exploration of simulation experiments
by discovery. In AAAI-94 Workshop on Knowledge
Discovery in Databases (KDD’94), Technical Report
WS-94-03, pages 251–262, Menlo Park, California.
The AAAI Press.
Kl
¨
osgen, W. (1996). Explora: A multipattern and mul-
tistrategy discovery assistant. In Fayyad, U. M.,
Piatetsky-Shapiro, G., and Uthurusamy, R., editors,
Advances in knowledge discovery and data mining,
pages 249–271. AAAI Press, Menlo Park.
Lagan
´
a, D., Legato, P., Pisacane, O., and Vocaturo,
F. (2006). Solving simulation optimization prob-
lems on grid computing systems. Parallel Comput.,
32(9):688–700.
Law, A. M. (2007). Simulation Modeling & Analysis.
McGraw-Hill, 4th, internat. edition.
Park, H. M. (2008). Hypothesis testing and statistical power
of a test. Working paper. the university information
technology services (UITS), Center for Statistical and
Mathematical Computing, Indiana University.
Quinlan, J. R. (1993). C4.5 - Programs for Machine Learn-
ing. Morgan Kaufmann Publishers, Inc.
R Development Core Team (2010). R: A Language and
Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0.
Schmidt, M. and Lipson, H. (2007). Comparison of tree
and graph encodings as function of problem complex-
ity. In GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation,
pages 1674–1679, New York, NY, USA. ACM.
Schmidt, M. and Lipson, H. (2009). Distilling free-
form natural laws from experimental data. Science,
324(5923):81–85.
Swisher, J. R. and Jacobson, S. H. (2002). Evaluating
the design of a family practice healthcare clinic using
discrete-event simulation. Health Care Management
Science, 5(2):75–88.
Swisher, J. R., Jacobson, S. H., and Y
¨
ucesan, E. (2003).
Discrete-event simulation optimization using ranking,
selection, and multiple comparison procedures: A sur-
vey. ACM Trans. Model. Comput. Simul., 13(2):134–
154.
Witten, I. H. and Frank, E. (2005). Data Mining: Practi-
cal machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition.
ICAART 2011 - 3rd International Conference on Agents and Artificial Intelligence
186