SEMANTIC OBJECT RECOGNITION USING CLUSTERING AND DECISION TREES
Falk Schmidsberger, Frieder Stolzenburg
2011
Abstract
Each object in a digital image is composed of many patches (segments) with different shapes and colors. In order to recognize an object, e.g. a table or a book, it is necessary to find out which segments are typical for which object and in which segment neighborhood they occur. If a typical segment in a characteristic neighborhood is found, this segment will be part of the object to be recognized. Typical adjacent segments for a certain object define the whole object in the image. Following this idea, we introduce a procedure that learns typical segment configurations for a given object class by training with example images of the desired object, which can be found in and downloaded from the Internet. The procedure employs methods from machine learning, namely k-means clustering and decision trees, and from computer vision, e.g. contour signatures.
References
- Alegre, E., Alaiz-Rodrguez, R., Barreiro, J., and Ruiz, J. (2009). Use of contour signatures and classification methods to optimize the tool life in metal machining. Estonian Journal of Engineering, 1:3-12.
- Bässmann, H. and Kreyss, J. (2004). Bildverarbeitung Ad Oculos. Springer, Berlin, Heidelberg, New York, 4th edition.
- Berry, M. J. A. and Linoff, G. (1997). Data Mining: Techniques For Marketing, Sales, and Customer Support. John Wiley & Sons Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronto.
- Bradski, G. and Kaehler, A. (2008). Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly Media Inc., Beijing, Cambridge, Farnham, Köln, Sebastopol, Taipei, Tokyo.
- Han, J. and Kamber, M. (2006). Data Mining: Concepts and Techniques. Morgan Kaufman Publishers, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2nd edition.
- Jähne, B. (2005). Digitale Bildverarbeitung. Springer, Berlin, Heidelberg, New York, 6th edition.
- OpenCV (2010). OpenCV (open source computer vision) library. http://opencv.willowgarage.com/wiki/.
- Shuang, F. (2001). Shape representation and retrieval using distance histograms. Technical report, Dept. of Computing Science, University of Alberta.
- SRVC (2009). Semantic robot vision challenge. http://www.semantic-robot-vision-challenge.org.
- Steinmüller, J. (2008). Bildanalyse. Von der Bildverarbeitung zur räumlichen Interpretation von Bildern. Springer, Berlin, Heidelberg.
Paper Citation
in Harvard Style
Schmidsberger F. and Stolzenburg F. (2011). SEMANTIC OBJECT RECOGNITION USING CLUSTERING AND DECISION TREES . In Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8425-40-9, pages 670-673. DOI: 10.5220/0003188706700673
in Bibtex Style
@conference{icaart11,
author={Falk Schmidsberger and Frieder Stolzenburg},
title={SEMANTIC OBJECT RECOGNITION USING CLUSTERING AND DECISION TREES},
booktitle={Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2011},
pages={670-673},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003188706700673},
isbn={978-989-8425-40-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - SEMANTIC OBJECT RECOGNITION USING CLUSTERING AND DECISION TREES
SN - 978-989-8425-40-9
AU - Schmidsberger F.
AU - Stolzenburg F.
PY - 2011
SP - 670
EP - 673
DO - 10.5220/0003188706700673