systems, pages 273–279. MIT Press Cambridge, MA,
USA.
Krusienski, D., Sellers, E., Cabestaing, F., Bayoudh, S.,
McFarland, D., Vaughan, T., and Wolpaw, J.(2006). A
comparison of classification techniques for the P300
Speller. J. Neural. Eng., 3:299–305.
Leiva-Murillo, J. and Artes-Rodriguez, A. (2007). Maxi-
mization of mutual information for supervised linear
feature extraction. IEEE Transactions on Neural Net-
works, 18(5):1433–1441.
Lotte, F., Congedo, M., L´ecuyer, A., Lamarche, F., and Ar-
naldi, B. (2007). A review of classification algorithms
for EEG-based Brain-Computer Interface. Journal of
Neural Engineering, 4:R1–R13.
Luck, S. (2005). An introduction to the event-related poten-
tial technique. MIT Press Cambridge, MA.
Mirghasemi, H., Fazel-Rezai, R., and Shamsollahi, M.
(2006). Analysis of P300 classifiers in Brain Com-
puter Interface speller. In Proceedings of the 28th
IEEE EMBS Annual International Conference, pages
6205–6208.
Nijboer, F., Sellers, E., Mellinger, J., Jordan, M., Matuz,
T., Furdea, A., Halder, S., Mochty, U., Krusienski, D.,
Vaughan, T., Wolpaw, J., Birbaumer, N., and K¨ubler,
A. (2008). A P300-based brain-computer interface
for people with amyotrophic lateral sclerosis. Clini-
cal Neurophysiology, 119:1909–1916.
Panicker, R., Puthusserypady, S., and Sun, Y. (2010). Adap-
tation in P300 Brain-Computer Interface: A two-
classifier co-training approach. IEEE Trans Biomed
Eng, 57.
Piccione, F., Giorgi, F., Tonin, P., Priftis, K., Giove, S., Sil-
voni, S., Palmas, G., and Beverina, F. (2006). P300-
based brain-computer interface: Reliability and per-
formance in healthy and paralysed participants. Clin-
ical Neurophysiology, 117:531–537.
Sajda, P., M¨uller, K.-R., and Shenoy, K. (2008). Brain-
computer interfaces. IEEE Signal Proccessing Maga-
zine, 25(1):16–17.
Sellers, E. and Donchin, E. (2006). A P300-based brain-
computer interface: Initial test by ALS patients. Clin-
ical Neurophysiology, 117:538–548.
Sellers, E., Vaughan, T., and Wolpaw, J. (2010). A brain-
computer interface for long-term independent home
use. Amyotrophic Lateral Sclerosis, pages 1–7.
Silvoni, S., Volpato, C., Cavinato, M., Marchetti, M.,
Priftis, K., Merico, A., Tonin, P., Koutsikos, K., Bev-
erina, F., and Piccione, F. (2009). P300-Based Brain-
Computer Interface Communication: Evaluation and
Follow-up in Amyotrophic Lateral Sclerosis. Fron-
tiers in Neuroscience, 3(60):1–12.
Suykens, J., Van Gestel, T., De Brabanter, J., De Moor, B.,
and Vanderwalle, J. (2002). Least square support vec-
tor machines. World Scientific, Singapore.
Thulasidas, M., Guan, C., and Wu, J. (2006). Robust clas-
sification of EEG signal for brain-computer interface.
IEEE Transactions on Neural Systems and Rehabili-
tation Engineering, 14(1):24–29.
Tipping, M. E. (2004). Bayesian inference: An introduc-
tion to principles and practice in machine learning. In
Bousquet, O., von Luxburg, U., and R¨atsch, G., edi-
tors, Advanced Lectures on Machine Learning, pages
41–62. Springer.
Vapnik, V. (1995). The Nature of Statistical Learning The-
ory. Springer-Verlag.
Yazicioglu, R., Merken, P., Puers, R., and Van Hoof, C.
(2006). Low-power low-noise 8-channel EEG front-
end ASIC for ambulatory acquisition systems. In The
32nd European Solid-State Circuits Conference. Pro-
ceedings of, pages 247–250.
BIOSIGNALS 2011 - International Conference on Bio-inspired Systems and Signal Processing
334