ACKNOWLEDGEMENTS
This study was possible with financial support from
the Sectoral Operational Programme for Human
Resources Development, project “Developing the
innovation capacity and improving the impact of
research through post-doctoral programmes”,
POSDRU/89/1.5/S/49944
REFERENCES
Davies, E., Olliff, C., Wright, I., Woodward, A. & Kell,
D. (1999). A weak pulsed magnetic field affects
adenine nucleotide oscillations, and related parameters
in aggregating Dictyostelium discoideum amoebae.
Bioelectrochem Bioenerg, 48, 149-162.
Falone, S., Grossi, M. R., Cinque, B., D'Angelo,
B., Tettamanti, E., Cimini, A., Di Ilio, C. & Amicarelli,
F. (2007). Fifty hertz extremely low-frequency
electromagnetic field causes changes in redox and
differentiative status in neuroblastoma cells. Int. J.
Biochem. Cell Biol., 39, 2093-2106.
Girgert, R., Gründker, C., Emons, G. & Hanf, V. (2008).
Electromagnetic fields alter the expression of estrogen
receptor cofactors in breast cancer cells.
Bioelectromagnetics, 29, 169-176.
Hardell, L. & Sage, C. (2008). Biological effects from
electromagnetic field exposure and public exposure
standards. Biomed. Pharmacother., 62, 104-109.
Hee Cho, Y. & Chung Won, H. (2003). The effect of
extremely low frequency electromagnetic fields (ELF-
EMF) on the frequency of micronuclei and sister
chromatid exchange in human lymphocytes induced
by benzo(a)pyrene. Toxicol. Lett., 143, 37-44.
Heynick, L. N., Johnston, S. A. & Mason, P.A. (2003).
Radio frequency electromagnetic fields: cancer,
mutagenesis, and genotoxicity. Bioelectromagnetics,
Suppl 6, S74-100.
Johansson, O. (2009). Disturbance of the immune system
by electromagnetic fields-A potentially underlying
cause for cellular damage and tissue repair reduction
which could lead to disease and impairment.
Pathophysiology, 16, 157-177.
Juutilainen, J. & Lang, S. (1997). Genotoxic, carcinogenic
and teratogenic effects of electromagnetic fields.
Introduction and overview. Mutat. Res., 387, 165-171.
Juutilainen, J., Heikkinen, P., Soikkeli, H. & Mäki-
Paakkanen, J. (2007).Micronucleus frequency in
erythrocytes of mice after long-term exposure to
radiofrequency radiation. Int. J. Radiat. Biol., 83, 213-
220.
Juutilainen, J., Kumlin, T. & Naarala, J. (2006). Do
extremely low frequency magnetic fields enhance the
effects of environmental carcinogens? A meta-analysis
of experimental studies. Int. J. Radiat. Biol., 82, 1-12.
Kavet, R. (1996). EMF and current cancer concepts.
Bioelectromagnetics, 17, 339-357.
Mairs, R. J., Hughes, K., Fitzsimmons, S., Prise, K. M.,
Livingstone, A., Wilson, L., Baig, N., Clark, A. M.,
Timpson, A., Patel, G., Folkard, M., Angerson, W. J. &
Boyd, M. (2007). Microsatellite analysis for
determination of the mutagenicity of extremely low-
frequency electromagnetic fields and ionising
radiation in vitro. Mutat. Res., 626, 34-41.
Meltz, M. L. (2003). Radiofrequency exposure and
mammalian cell toxicity, genotoxicity, and
transformation. Bioelectromagnetics, Suppl 6, S196-
213.
Pasquini, R., Villarini, M., Sforzolini Scassellati, G.,
Fatigoni, C. & Moretti, M. (2003). Micronucleus
induction in cells co-exposed in vitro to 50 Hz
magnetic field and benzene, 1,4-benzenediol
(hydroquinone) or 1,2,4-benzenetriol. Toxicology in
Vitro, 17, 581-586.
Ronchetto, F., Barone, D., Cintorino, M., Berardelli, M.,
Lissolo, S., Orlassino, R., Ossola, P. & Tofani, S.
(2004). Extremely low frequency-modulated static
magnetic fields to treat cancer: A pilot study on
patients with advanced neoplasm to assess safety and
acute toxicity. Bioelectromagnetics, 25, 563-571.
Savage, J. R. K. (2000). Micronuclei : Pitfalls and
Problems in Atlas of Genetics and Cytogenetics in
Oncology and Haematology. Retrived July 2000 from
http://atlasgeneticsoncology.org/Deep/MicronucleiID2
0016.html.
Simkó, M., Kriehuber, R., Weiss, D. G. & Luben, R.A.
(1998). Effects of 50 Hz EMF exposure on
micronucleus formation and apoptosis in transformed
and nontransformed human cell lines.
Bioelectromagnetics, 19, 85-91.
Speit, G., Schütz, P. & Hoffmann, H. (2007). Genotoxic
effects of exposure to radiofrequency electromagnetic
fields (RF-EMF) in cultured mammalian cells are not
independently reproducible. Mutat. Res., 626, 42-47.
Tenuzzo, B., Chionna, A., Panzarini, E., Lanubile, R.,
Tarantino, P., Di Jeso, B., Dwikat, M. & Dini, L.
(2006). Biological effects of 6 mT statistic magnetic
fields: a comparative study in different cell types.
Bioelectromagnetics, 27, 560-577.
Thun-Battersby, S., Mevissen, M. & Löscher, W. (1999).
Exposure of Sprague-Dawley rats to a 50-Hertz, 100-
microTesla magnetic field for 27 weeks facilitates
mammary tumorigenesis in the 7,12-dimethylbenz[a]-
anthracene model of breast cancer. Cancer Res., 59,
3627-3633.
Verschaeve, L., Heikkinen, P., Verheyen, G., Van Gorp, U.,
Boonen, F., Vander Plaetse, F., Maes, A., Kumlin, T.,
Mäki-Paakkanen, J., Puranen, L. & Juutilainen, J.
(2006). Investigation of co-genotoxic effects of
radiofrequency electromagnetic fields in vivo. Radiat.
Res., 165, 598-607.
Wolff, I. & Muller, P. (2005). Micronuclei and Comet
Assay. In J. E. Celis, T. Hunter, N. Carter, D. Shotton,
J. V. Small & K. Simons (Eds.), Cell Biology: A
Laboratory Handbook. Elsevier Academic Press. pp.
325-334.
THE CONSEQUENCES OF LOW FREQUENCY AND INTENSITY ELECTROMAGNETIC FIELDS ON THE
FREQUENCY OF MICRONUCLEI IN HeLa CELLS
443