EXPLOITING VISUAL OBSERVATIONS FOR EFFICIENT WORKFLOW SCHEDULING IN PRODUCTION ENVIRONMENTS

Anastasios Doulamis

2011

Abstract

This paper proposes a new production scheduling algorithm that exploits (a) visual observations of industrial operations to estimate the actual completion times for tasks and (b) incremental graph partitioning-based clustering algorithms. The latter are implemented through an incremental implementation of the spectral clustering. Computer vision tools are applied to identify industrial operations via visual observations.

References

  1. Gonzalez Fernandez, J., Yelmo Garcia, J. C., Martin Garcia Yo.-S., and de Gracia Santos J., “Transf-ID: Automatic ID and Data Capture for Rail Freight Asset Management”, IEEE Internet Computing Mag. Jan./Feb. 2010.
  2. Ilic, A., Andersen, T., and Michahelles, F., “Increasing Supply-Chain Visibility with Rule-Based RFID Data Analysis”, IEEE Internet Computing Jan./Feb. 2010.
  3. Shaik, M. A., Floudas, C. A., Kallrath, J., Pitz, H.-J, “Production scheduling of a large-scale industrial continuous plant: Short-term and medium-term scheduling,” Computer Aided Chemical Engineering, Vol. 24, pp. 613-618, 2007.
  4. Drotos, M., Erdos, G., Kis, T., “Computing lower and upper bounds for a large-scale industrial job shop scheduling problem,” European Journal of Operational Research, Vol. 197, No,1, pp. 296-306, August 2009.
  5. Malamas, E. N., Petrakis, E. M., Zervakis, M., Petit, L., Legat, J.-D., “A survey on industrial vision systems, applications and tools,” Image and Vision Computing, Vol. 21, No. 2, pp. 171-188, 2003.
  6. Motai, Y., “Salient feature extraction of industrial objects for an automated assembly system,” Computers in Industry, Vol. 56, Nos. 8-9, pp, 943-957, December, 2005.
  7. Karakaya M. and Hairong Qi, “Target Detection and Counting using a Progressive Certainty Map in Distributed Visual Sensor Networks,” 3rd ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2009.
  8. Idoughi, D., Kerkar, M., Kolski, C., “Towards new web services based supervisory systems in complex industrial organizations: Basic principles and case study,” Computers in Industry, Vol. 61, No. 3, pp. 235-249, 2010.
  9. Bach F. R., and Jordan M. I., “Learning spectral clustering,” In S. Thrun, L. Saul, and B. Schoelkopf (Eds.), Advances in Neural Information Processing Systems (NIPS) 16, 2004.
  10. Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong and T. S. Huang “Incremental spectral clustering by efficiently updating the eigen-system,” Patter Recognition, Vol. 43, No. 1, pp.113-127, 2010.
  11. Doulamis A., “Dynamic Tracking Re-Adjustment: A Method for Automatic Tracking Recovery in Complex Visual Environments,” Multimedia Tools and Applications, Springer Press, 1380-7501 (Print) 1573- 7721 (Online).
  12. Ky Fan, “Maximum properties and inequalities for the eigenvalues of completely continuous operators,” Proceedings of the National Academy of Sciences pp. 760-766, 1951
  13. Culibrk, D., Marques, O., Socek, D., Kalva H., Furht, B. “Neural Network Approach to Background Modeling for Video Object Segmentation,” IEEE Trans. on Neural Networks, Vol. 18, No.6, pp.1614-1627, Nov.2007.
  14. Doulamis A. D., Doulamis N. D. and Kollias, S. D., “On Line Retrainable Neural Networks: Improving the Performance of Neural Network in Image Analysis problems,” IEEE Trans. on Neural Networks, Vol. 11, No. 1, pp. 137-155, January 2000.
  15. Cui, M., Femiani, J., Hu, J., Wonka, P., Razdan, A., “Curve matching for open 2D curves,” Pattern Recognition Letters, Vol. 30, pp. 1-10, 2009.
Download


Paper Citation


in Harvard Style

Doulamis A. (2011). EXPLOITING VISUAL OBSERVATIONS FOR EFFICIENT WORKFLOW SCHEDULING IN PRODUCTION ENVIRONMENTS . In Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8425-40-9, pages 531-537. DOI: 10.5220/0003305905310537


in Bibtex Style

@conference{icaart11,
author={Anastasios Doulamis},
title={EXPLOITING VISUAL OBSERVATIONS FOR EFFICIENT WORKFLOW SCHEDULING IN PRODUCTION ENVIRONMENTS},
booktitle={Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2011},
pages={531-537},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003305905310537},
isbn={978-989-8425-40-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - EXPLOITING VISUAL OBSERVATIONS FOR EFFICIENT WORKFLOW SCHEDULING IN PRODUCTION ENVIRONMENTS
SN - 978-989-8425-40-9
AU - Doulamis A.
PY - 2011
SP - 531
EP - 537
DO - 10.5220/0003305905310537