50 100 150 200 250 300 350 400 450 500
50
100
150
200
250
300
350
400
450
500
(a)
50 100 150 200 250 300 350 400 450 500
50
100
150
200
250
300
350
400
450
500
(b)
Fig.7.Some results of landmarks extraction. (a) Good detection of landmarks. (b) False detection.
Room. A use of General-purpose Processing on Graphics Processing Units (GPGPU)
to accelerate calculus is also under progress to be able to run our method on real time.
We also want to extend this work to assist the surgeon on other kind of orthopaedic
surgery (concerning iliac crest for instance).
References
1. D. Amin, T. Kanade, A. M. D. Gioia, and B. Jaramaz. Ultrasound Registration of the Bone
Surface for Surgical Navigation. Computer Aided Surgery, (1):1–16, 2003.
2. T. Binder, M. S¨ussner, D. Moertl, T. Strohmer, H. Baumgartner, G. Maurer, and G. Porenta.
Artificial neural networks and spatial temporal contour linking for automated endocardial
contour detection on echocardiograms: a novel approach to determine left ventricular con-
tractile function. Ultrasound in medicine & biology, 25(7):1069–76, Sept. 1999.
3. D.-R. Chen, R.-F. Chang, W. Kuo, M. Chen, and Y. Huang. Diagnosis of breast tumors
with sonographic texture analysis using wavelet transform and neural networks. Ultrasound
Medical Biology, 30(5):1301–1310, Apr. 2002.
4. P. Foroughi, E. Boctor, M. J. Swartz, R. H. Taylor, and G. Fichtinger. Ultrasound Bone Seg-
mentation Using Dynamic Programming. 2007 IEEE Ultrasonics Symposium Proceedings,
pages 2523–2526, Oct. 2007.
5. I. Hacihaliloglu, R. Abugharbieh, A. Hodgson, and R. Rohling. Bone segmentation and
fractire detection in ultrasound using 3D local phase features. MICCAI 2008, pages 287–
295, 2008.
6. K. Horsch, M. L. Giger, L. A. Venta, and C. J. Vyborny. Automatic segmentation of breast
lesions on ultrasound. Medical physics, 28(8):1652–9, Aug. 2001.
7. A. K. Jain. Understanding bone responses in B-mode ultrasound images and automatic
bone surface extraction using a Bayesian probabilistic framework. Proceedings of SPIE,
5373:131–142, 2004.
8. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International
Journal of Computer Vision, 1(4):321–331, Jan. 1988.
9. P. Laugier, F. Padilla, F. Peyrin, K. Raum, A. Saied, M. Talmant, and L. Vico. Current trends
in ultrasonic investigation of bone. ITBM-RBM, 26:299–311, 2005.
10. M. Mignotte, J. Meunier, and J.-C. Tardif. Endocardial Boundary Estimation and Tracking in
Echocardiographic Images using Deformable Template and Markov Random Fields. Pattern
Analysis & Applications, 4(4):256–271, Nov. 2001.
11. A. Mishra. A GA based approach for boundary detection of left ventricle with echocardio-
graphic image sequences. Image and Vision Computing, 21(11):967–976, Oct. 2003.
41