comparing different machine learning classifiers
draws the final conclusion. This final phase is
focusing on balance the generality of solution and
the overall performance of trained model. Early
results shows, that brainstorming approach reaches
higher performance than any single method used in
consensus. This confirms reported results of other
meta-learning approaches based on different
versions of single machine learning algorithm or
those that use a set of different ML (Plewczynski,
D., 2009), (Plewczynski, D., 1998), (Plewczynski,
D., 2010).
ACKNOWLEDGEMENTS
This work was supported by Polish Ministry of
Education and Science (N301 159735, N518 409238
and others).
REFERENCES
Can, T., et al., Automated protein classification using
consensus decision. Proc IEEE Comput Syst
Bioinform Conf, 2004: p. 224-35.
Han, X., Cancer molecular pattern discovery by subspace
consensus kernel classification. Comput Syst
Bioinformatics Conf, 2007. 6: p. 55-65.
Schulze-Kremer, S. and R.D. King, IPSA-Inductive
Protein Structure Analysis. Protein Eng, 1992. 5(5): p.
377-90.
Vernikos, G. S. and J. Parkhill, Resolving the structural
features of genomic islands: a machine learning
approach. Genome Res, 2008. 18(2): p. 331-42.
Arimoto, R., M. A. Prasad, and E.M. Gifford,
Development of CYP3A4 inhibition models:
comparisons of machine-learning techniques and
molecular descriptors. J Biomol Screen, 2005. 10(3):
p. 197-205.
Bhasin, M. and G. P. Raghava, Prediction of CTL epitopes
using QM, SVM and ANN techniques. Vaccine, 2004.
22(23-24): p. 3195-204.
Briem, H. and J. Gunther, Classifying "kinase inhibitor-
likeness" by using machine-learning methods.
Chembiochem, 2005. 6(3): p. 558-66.
Burton, J., et al., Virtual screening for cytochromes p450:
successes of machine learning filters. Comb Chem
High Throughput Screen, 2009. 12(4): p. 369-82.
Yao, X. Q., H. Zhu, and Z. S. She, A dynamic Bayesian
network approach to protein secondary structure
prediction. BMC Bioinformatics, 2008. 9: p. 49.
Abrusan, G., et al., TEclass--a tool for automated
classification of unknown eukaryotic transposable
elements. Bioinformatics, 2009. 25(10): p. 1329-30.
Hwang, S., Z. Gou, and I. B. Kuznetsov, DP-Bind: a web
server for sequence-based prediction of DNA-binding
residues in DNA-binding proteins. Bioinformatics,
2007. 23(5): p. 634-6.
Garg, P., et al., SubCellProt: predicting protein
subcellular localization using machine learning
approaches. In Silico Biol, 2009. 9(1-2): p. 35-44.
Miller, M. L. and N. Blom, Kinase-specific prediction of
protein phosphorylation sites. Methods Mol Biol,
2009. 527: p. 299-310, x.
Bindewald, E. and B. A. Shapiro, RNA secondary
structure prediction from sequence alignments using a
network of k-nearest neighbor classifiers. RNA, 2006.
12(3): p. 342-52.
Plewczynski, D. and K. Ginalski, The interactome:
predicting the protein-protein interactions in cells.
Cell Mol Biol Lett, 2009. 14(1): p. 1-22.
Plewczynski, D., et al., The RPSP: Web server for
prediction of signal peptides. Polymer, 2007. 48: p.
5493-5496.
Plewczynski, D., A. H. Spieser, and U. Koch,
Performance of Machine Learning Methods for
Ligand-Based Virtual Screening. Combinatorial
Chemistry & High Throughput Screening, 2009.
Plewczynski, D., et al., AutoMotif server: prediction of
single residue post-translational modifications in
proteins. Bioinformatics, 2005. 21(10): p. 2525-7.
Plewczynski, D., et al., Virtual High Throughput
Screening Using Combined Random Forest and
Flexible Docking. Combinatorial Chemistry & High
Throughput Screening, 2009.
Plewczynski, D., S. A. H. Spieser, and U. Koch, Assessing
different classification methods for virtual screening.
Journal of Chemical Information and Modeling, 2006.
46(3): p. 1098-1106.
Bruce, C. L., et al., Contemporary QSAR classifiers
compared. J Chem Inf Model, 2007. 47(1): p. 219-27.
Islam, M. M., et al., Bagging and boosting negatively
correlated neural networks. IEEE Trans Syst Man
Cybern B Cybern, 2008. 38(3): p. 771-84.
Plewczynski, D., S. A. Spieser, and U. Koch, Performance
of machine learning methods for ligand-based virtual
screening. Comb Chem High Throughput Screen,
2009. 12(4): p. 358-68.
Schwenk, H. and Y. Bengio, Boosting neural networks.
Neural Comput, 2000. 12(8): p. 1869-87.
Serpen, G., D. K. Tekkedil, and M. Orra, A knowledge-
based artificial neural network classifier for
pulmonary embolism diagnosis. Comput Biol Med,
2008. 38(2): p. 204-20.
Shrestha, D. L. and D. P. Solomatine, Experiments with
AdaBoost.RT, an improved boosting scheme for
regression. Neural Comput, 2006. 18(7): p. 1678-710.
27. Peng, Y., A novel ensemble machine learning for
robust microarray data classification. Comput Biol
Med, 2006. 36(6): p. 553-73.
Wang, C. W., New ensemble machine learning method for
classification and prediction on gene expression data.
Conf Proc IEEE Eng Med Biol Soc, 2006. 1: p. 3478-
81.
Yang, J. Y., et al., A hybrid machine learning-based
method for classifying the Cushing's Syndrome with
BRAINSTORMING - Agent based Meta-learning Approach
489