REAL-TIME 3D MODELING OF VEHICLES IN LOW-COST MONOCAMERA SYSTEMS

M. Nieto, L. Unzueta, A. Cortés, J. Barandiaran, O. Otaegui, P. Sánchez

2011

Abstract

A new method for 3D vehicle modeling in low-cost monocamera surveillance systems is introduced in this paper. The proposed algorithm aims to resolve the projective ambiguity of 2D image observations by means of the integration of temporal information and model priors within a Markov Chain Monte Carlo (MCMC) method. The method is specially designed to work in challenging scenarios, with noisy and blurred 2D observations, where traditional edge-fitting or feature-based methods fail. Tests have shown excellent estimation results for traffic-flow video surveillance applications, that can be used to classify vehicles according to their length, width and height.

References

  1. Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing, 50(2):174-188.
  2. Barder, F. and Chateau, T. (2008). MCMC particle filter for real-time visual tracking of vehicles. In IEEE International Conference on Intelligent Transportation Systems, pages 539-544.
  3. Buch, N., Orwell, J., and Velastin, S. A. (2010). Urban road user detection and classification using 3d wire frame models. IET Computer Vision Journal, 4(2):105-116.
  4. Haag, M. and Nagel, H.-H. (2000). Incremental recognition of traffic situations from video image sequences. Image and Vision Computing, 18:137-153.
  5. Isard, M. and Blake, A. (1998). CONDENSATION- conditional density propagation for visual tracking. International Journal of Computer Vision, 29(1):5-28.
  6. Khan, Z., Balch, T., and Dellaert, F. (2005). MCMC-based particle filtering for tracking a variable number of interacting targets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(11):1805-1819.
  7. Kim, K., Chalidabhongse, T. H., Harwood, D., and Davis, L. (2005). Real-time foreground-background segmentation using codebook model. Real-time Imaging, 11(3):167-256.
  8. Pang, C., Lam, W., and Yung, N. (2007). A method for vehicle count in the presence of multiple occlusions in traffic images. IEEE Transactions on Intelligent Transportation Systems, 8(3):441-459.
Download


Paper Citation


in Harvard Style

Nieto M., Unzueta L., Cortés A., Barandiaran J., Otaegui O. and Sánchez P. (2011). REAL-TIME 3D MODELING OF VEHICLES IN LOW-COST MONOCAMERA SYSTEMS . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011) ISBN 978-989-8425-47-8, pages 459-464. DOI: 10.5220/0003312104590464


in Bibtex Style

@conference{visapp11,
author={M. Nieto and L. Unzueta and A. Cortés and J. Barandiaran and O. Otaegui and P. Sánchez},
title={REAL-TIME 3D MODELING OF VEHICLES IN LOW-COST MONOCAMERA SYSTEMS},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)},
year={2011},
pages={459-464},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003312104590464},
isbn={978-989-8425-47-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)
TI - REAL-TIME 3D MODELING OF VEHICLES IN LOW-COST MONOCAMERA SYSTEMS
SN - 978-989-8425-47-8
AU - Nieto M.
AU - Unzueta L.
AU - Cortés A.
AU - Barandiaran J.
AU - Otaegui O.
AU - Sánchez P.
PY - 2011
SP - 459
EP - 464
DO - 10.5220/0003312104590464