BIOINFORMATICS INSPIRED ALGORITHM FOR STEREO CORRESPONDENCE

Romain Dieny, Jerome Thevenon, Jesus Martinez-del-Rincon, Jean-Christophe Nebel

2011

Abstract

In this paper, we exploit the analogy between protein sequence alignment and image pair correspondence to design a bioinformatics-inspired framework for stereo matching based on dynamic programming. This approach also led to the creation of a meaningfulness graph, which helps to predict matching validity according to image overlap and pixel similarity. Finally, we propose an automatic procedure to estimate automatically all matching parameters. This work is evaluated qualitatively and quantitatively using a standard benchmarking dataset and by conducting stereo matching experiments between images captured at different resolutions. Results confirm the validity of the computer vision/bioinformatics analogy to develop a versatile and accurate low complexity stereo matching algorithm.

References

  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, pp.3389-3402.
  2. Baker, H., Binford, T., 1981. Depth from edge and intensity based stereo. In IJCAI81, pp.631-636.
  3. Belhumeur, P. N., 1996. A Bayesian approach to binocular stereopsis. International Journal of Computer Vision, 19(3), pp.237-260.
  4. Bobick, A. F., Intille, S. S., 1999. Large occlusion stereo. International Journal of Computer Vision, 33(3), pp.181-200.
  5. Cox, I. J., Hingorani, S. L., Rao, S. B., Maggs, B. M., 1996. A maximum likelihood stereo algorithm. Computer Vision and Image Understanding, 63(3), pp.542-567.
  6. Dayhoff, M. O., Eck, R. V., Chang, M. A., Sochard, M. R., 1965. Atlas of Protein Sequence and Structure 1965, National Biomedical Research Foundation, Silver Spring, Maryland.
  7. Dayhoff, M. O., 1978. Atlas of Protein Sequence and Structure, Suppl 3, National Biomedical Research Foundation, Silver Spring, Maryland.
  8. Deng, Y., Lin, X., 2006. A fast line segment based dense stereo algorithm using tree dynamic programming. In European Conference on Computer Vision, Graz, Austria, May 7 - 13, 2006.
  9. Edgar, R. C., 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, pp.113.
  10. Forstmann, S., Kanou, Y., Ohya, J., Thuering, S., Schmitt, A., 2004. Real-Time Stereo by using Dynamic Programming, In Computer Vision and Pattern Recognition Workshop, Washington, DC, USA, 27 June-2 July 2004.
  11. Geiger, D., Ladendorf, B., Yuille, A., 1992. Occlusions and binocular stereo. In European Conference on Computer Vision, pp.425-433.
  12. Henikoff, S., Henikoff, J., 1992. Amino acid substitution matrices from protein blocks. Proceedings of the National Academy of Sciences, 89, pp.10915-10919.
  13. Higgins, D., Thompson, J., Gibson, T., Thompson, J. D., Higgins, D. G., Gibson, T. J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, pp.4673-4680.
  14. International Human Genome Sequencing Consortium, 2001. Initial sequencing and analysis of the human genome. Nature, 409, pp.860-921.
  15. Karlin, S., Altschul, S. F., 1990. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proceedings of the National Academy of Sciences, 87, pp.2264-2268.
  16. Klaus, A, Sormann, M, Karner, K, Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure, ICPR 3, pp. 15-18.
  17. Lassmann, T., Sonnhammer, E. L. L., 2005. Kalign - an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics, 6, pp.298.
  18. Lazaros, N., Sirakoulis, G. C., Gasteratos A., 2008. Review of Stereo Vision Algorithms: From Software to Hardware. International Journal of Optomechatronics, 2(4), pp.435 - 462.
  19. Leinonen, R., Diez, F. G., Binns, D., Fleischmann, W., Lopez, R., Apweiler, R., 2004. UniProt Archive. Bioinformatics, 20, pp.3236-3237.
  20. Mackey, A. J., Haystead, T. A., Pearson, W. R., 2002. Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences. Molecular and Cellular Proteomics, 1(2), pp.139-147.
  21. MacLean, W. J., Sabihuddin, S., Islam, J., 2010. Leveraging cost matrix structure for hardware implementation of stereo disparity computation using dynamic programming. Computer Vision and Image Understanding, In Press.
  22. Mühlmann, K., Maier, D., Hesser, J., Männer, R. 2002. Calculating Dense Disparity Maps From Color Stereo Images, An Efficient Implementation. International Journal of Computer Vision, 47(3), pp.78-88.
  23. Needleman, S. B., Wunsch, C. D., 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3), pp.443-53.
  24. Notredame, C., Higgins, D., Heringa, J., 2000. T-Coffee: A novel method for multiple sequence alignments. Journal of Molecular Biology, 302, pp.205-217.
  25. Ohta, Y., Kanade, T., 1985. Stereo by intra- and interscanline search using dynamic programming. IEEE TPAMI, 7(2), pp.139-154.
  26. Pearson, W. R., 1998. Empirical statistical estimates for sequence similarity searches. Journal of Molecular Biology, 276, pp.71-84.
  27. Rost, B., 1999. Twilight zone of protein sequence alignments. Protein Engineering. 12(2), pp.85-94.
  28. Salmen, J., Schlipsing, M., Edelbrunner, J., Hegemann, S., Lueke, S., 2009. Real-time stereo vision: making more out of dynamic programming. In International Conference on Computer Analysis of Images and Patterns, Münster, Germany, Sept. 2-4, 2009.
  29. Scharstein, D., Szeliski, R, 2002. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1), pp.7-42.
  30. Scharstein, D., Szeliski, R., 2003. High-accuracy stereo depth maps using structured light. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2003), vol. 1, pp. 195-202, June 2003.
  31. Torr, P. H. S., Criminisi, A., 2004. Dense stereo using pivoted dynamic programming. Image and Vision Computing, 22(10), pp.795-806.
  32. Veksler, O., 2005. Stereo correspondence by dynamic programming on a tree. In Computer Vision and Pattern Recognition, San Diego, CA, USA, 20-26 June 2005.
  33. Wang, L., Liao, M., Gong, M., Yang, R., Nistér, D., 2006. High-quality real-time stereo using adaptive cost aggregation and dynamic programming. In 3D Data Processing, Visualization and Transmission. Chapel Hill, USA, June 14-16, 2006.
Download


Paper Citation


in Harvard Style

Dieny R., Thevenon J., Martinez-del-Rincon J. and Nebel J. (2011). BIOINFORMATICS INSPIRED ALGORITHM FOR STEREO CORRESPONDENCE . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011) ISBN 978-989-8425-47-8, pages 465-473. DOI: 10.5220/0003312304650473


in Bibtex Style

@conference{visapp11,
author={Romain Dieny and Jerome Thevenon and Jesus Martinez-del-Rincon and Jean-Christophe Nebel},
title={BIOINFORMATICS INSPIRED ALGORITHM FOR STEREO CORRESPONDENCE},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)},
year={2011},
pages={465-473},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003312304650473},
isbn={978-989-8425-47-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)
TI - BIOINFORMATICS INSPIRED ALGORITHM FOR STEREO CORRESPONDENCE
SN - 978-989-8425-47-8
AU - Dieny R.
AU - Thevenon J.
AU - Martinez-del-Rincon J.
AU - Nebel J.
PY - 2011
SP - 465
EP - 473
DO - 10.5220/0003312304650473