proposed approach has successfully detected and es-
timated predefined motion patterns describing impor-
tant 3D motions such as movements toward the robot
which is very helpful in detecting possible future col-
lisions of moving objects with the robot.
REFERENCES
Ali, I. and Mertsching, B. (2009). Surveillance System Us-
ing a Mobile Robot Embedded in a Wireless Sensor
Network . In International Conference on Informatics
in Control, Automation and Robotics, volume 2, pages
293 – 298, Milan, Italy.
Aziz, Z. and Mertsching, B. (2009). Visual Attention in 3D
Space. In International Conference on Informatics in
Control, Automation and Robotics, volume 2, pages
471 – 474, Milan, Italy.
Bruhn, A., Weickert, J., Feddern, C., Kohlberger, T., and
Schnorr, C. (2005). Variational optical flow computa-
tion in real time. 14(5):608–615.
Gruber, A. and Weiss, Y. (2007). Incorporating non-motion
cues into 3d motion segmentation. Computer Vision
and Image Understanding, 108(3):261–271.
Hasler, N., Rosenhahn, B., Thormhlen, T., Wand, M., Gall,
J., and H.-P.Seidel (2009). Markerless motion capture
with unsynchronized moving cameras. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR’09).
Kim, J.-H., Chung, M. J., and Choi, B. T. (2010). Recur-
sive estimation of motion and a scene model with a
two-camera system of divergent view. Pattern Recog-
nition, 43(6):2265 – 2280.
Kotth¨auser, T. and Mertsching, B. (2010). Validation vision
and robotic algorithms for dynamic real world envi-
ronments. In Simulation, Modeling and Programming
for Autonomous Robots, LNAI 6472, pages 97 – 108.
Springer.
Li, H., Hartley, R., and Kim, J. (2008). A linear approach to
motion estimation using generalized camera models.
In CVPR08, pages 1–8.
Massad, A., Jesikiewicz, M., and Mertsching, B. (2002).
Space-variant motion analysis for an active-vision
system. In Proceedings of ACIVS 2002, Ghent, Bel-
gium.
Pundlik, S. J. and Birchfield, S. T. (2006). Motion seg-
mentation at any speed. In Proceedings of the British
Machine Vision Conference, Scotland.
Ribnick, E., Atev, S., and Papanikolopoulos, N. (2009). Es-
timating 3d positions and velocities of projectiles from
monocular views. IEEE Trans. Pattern Anal. Mach.
Intell., 31(5):938–944.
Rosenhahn, B., Brox, T., and Weickert, J. (2007). Three-
dimensional shape knowledge for joint image seg-
mentation and pose tracking. Int. J. Comput. Vision,
73(3):243–262.
Schmudderich, J., Willert, V., Eggert, J., Rebhan, S., Go-
erick, C., Sagerer, G., and Korner, E. (2008). Esti-
mating object proper motion using optical flow, kine-
matics, and depth information. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics,
38(4):1139 –1151.
Shafik, M. and Mertsching, B. (2007). Enhanced motion pa-
rameters estimation for an active vision system. In 7th
Open German/Russian Workshop on Pattern Recogni-
tion and Image Understanding, OGRW 07, Ettlingen,
Germany.
Shafik, M. and Mertsching, B. (2008). Fast saliency-based
motion segmentation algorithm for an active vision
system. In Advanced Concepts for Intelligent Vision
Systems (ACIVS 2008), Juan-les-Pins, France.
Shafik, M. and Mertsching, B. (2009). Real-Time Scan-
Line Segment Based Stereo Vision for the Estimation
of Biologically Motivated ClassifierCells. In KI 2009:
Advances in Artificial Intelligence, volume 5803 of
LNAI, pages 89 – 96.
Sotelo, M., Flores, R., Garca, R., Ocaa, M., Garca, M.,
Parra, I., Fernndez, D., Gaviln, M., and Naranjo, J.
(2007). Ego-motion computing for vehicle veloc-
ity estimation. In Moreno-Daz, R., Pichler, F., and
Quesada-Arencibia, A., editors, EUROCAST, volume
4739 of LNCS, pages 1119–1125.
Taylor, J., Jepson, A., and Kutulakos, K. (2010). Non-rigid
structure from locally-rigid motion. In Proceedings of
Computer Vision and Pattern Recognition 2010, San
Francisco, CA.
Tsao, T.-R., Shyu, H.-J., Libert, J. M., and Chen, V. C.
(1991). A lie group approach to a neural system
for three-dimensional interpretation of visual motion.
IEEE Trans. on Neural Networks, 2(1):149–155.
Yamasaki, T. and Aizawa, K. (2007). Motion segmentation
and retrieval for 3-d video based on modified shape
distribution. EURASIP Journal on Advances in Signal
Processing, 2007:Article ID 59535, 11 pages.
Yang, S. and Wang, C. (2009). Multiple-model ransac
for ego-motion estimation in highly dynamic environ-
ments. In IEEE International Conference on Robotics
and Automation (ICRA ’09), pages 3531–3538.
FAST DEPTH-INTEGRATED 3D MOTION ESTIMATION AND VISUALIZATION FOR AN ACTIVE VISION
SYSTEM
103