Cox, I. J. and Hingorani, S. L. (1996). An efficient im-
plementation of reid’s multiple hypothesis tracking al-
gorithm and its evaluation for the purpose of visual
tracking. IEEE Trans. Pattern Anal. Mach. Intell.,
18(2):138–150.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In Proceedings of the
2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, volume 1, pages
886–893, Washington, DC, USA. IEEE Computer So-
ciety.
Eng, H., Wang, J., Kam, A., and Yau, W. (2004). A bayesian
framework for robust human detection and occlusion
handling using a human shape model. In International
Conference on Pattern Recognition, volume 2, pages
257–260.
Fieguth, P. and Terzopoulos, D. (1997). Color-based track-
ing of heads and other mobile objects at video frame
rates. In Proceedings IEEE Conf. on Computer Vi-
sion and Pattern Recognition, pages 21–27, San Juan,
Puerto Rico.
Fortmann, T. E., Bar-Shalom, Y., and Scheffe, M. (1983).
Sonar tracking of multiple targets using joint prob-
abilistic data association. IEEE Journal of Oceanic
Engineering, 8(3):173–184.
Gavrila, D. M. (2000). Pedestrian detection from a moving
vehicle. In Proc. of European Conference on Com-
puter Vision, pages 37–49, Dublin, Ireland.
Gavrila, D. M. and Davis, L. S. (1996). 3-d model-based
tracking of humans in action: a multi-view approach.
In Proc. IEEE Computer Vision and Pattern Recogni-
tion, pages 73–80, San Francisco.
Isard, M. and Blake, A. (1996). Contour tracking by
stochastic propagation of conditional density. In Pro-
ceedings of the European Conference on Computer Vi-
sion, pages 343–356, Cambridge, UK.
Khan, S., Javed, O., Rasheed, Z., and Shah, M. (2001). Hu-
man tracking in multiple cameras. In Proceedings of
the 8th IEEE International Conference on Computer
Vision, pages 331–336, Vancouver, Canada.
Konstantinova, P., Udvarev, A., and Semerdjiev, T. (2003).
A study of a target tracking algorithm using global
nearest neighbor approach. In Proceeding of Inter-
national Conference on Computer Systems and Tech-
nologies.
Leibe, B., Schindler, K., and Gool, L. V. (2007). Coupled
detection and trajectory estimation for multi-object
tracking. In International Conference on Computer
Vision.
Li, L., Huang, W., Gu, I. Y. H., and Tian, Q. (2003). Fore-
ground object detection from videos containing com-
plex background. In Proceedings of the 11th ACM
International Conference on Multimedia, pages 2–10.
Nguyen, H. T., Worring, M., van den Boomgaard, R., and
Smeulders, A. W. M. (2002). Tracking nonparame-
terized object contours in video. IEEE Trans. Image
Process, 11(9):1081–1091.
Okuma, K., Taleghani, A., Freitas, N. D., Little, J., and
Lowe, D. (2004). A boosted particle filter: Multitar-
get detection and tracking. In European Conference
on Computer Vision.
Olsen, C. F. and Huttenlocher, D. P. (1997). Automatic
target recognition by matching oriented edge pixels.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6:103–113.
Panin, G. (2011). Model-based visual tracking: the OpenTL
framework. Wiley-Blackwell. (to appear).
Panin, G., Lenz, C., Nair, S., Roth, E., Wojtczyk, M.,
Friedlhuber, T., and Knoll, A. (2008). A unifying
software architecture for model-based visual tracking.
In IS&T/SPIE 20th Annual Symposium of Electronic
Imaging, San Jose, CA.
Reid, D. B. (1979). An algorithm for tracking multi-
ple targets. IEEE Transaction on Automatic Control,
24(6):843–854.
Roh, M. C., Kim, T. Y., Park, J., and Lee, S. W. (2007).
Accurate object contour tracking based on boundary
edge selection. Pattern Recognition, 40(3):931–943.
Stauffer, C. and Grimson, W. E. L. (2000). Learning pat-
terns of activity using real-time tracking. IEEE Trans-
action on Pattern Analysis and Machine Intelligence,
22(8):747–757.
Stenger, B., Thayananthan, A., Torr, P. H. S., and Cipolla,
R. (2006). Model-based hand tracking using a hierar-
chical bayesian filter. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28:1372–1384.
Stillman, S., Tanawongsuwan, R., and Essa, I. (1998). A
system for tracking and recognizing multiple people
with multiple cameras. In In Proceedings of Second
International Conference on Audio-Visionbased Per-
son Authentication, pages 96–101.
Wren, C., Azarbayejani, A., Darrel, T., and Pentland, A.
(1997). Pfinder, real time tracking of the human body.
IEEE Transaction on Pattern Analysis and Machine
Intelligence, 19(7):780–785.
Wu, B. and Nevatia, R. (2007). Detection and tracking of
multiple, partially occluded humans by bayesian com-
bination of edgelet based part detectors. International
Journal of Computer Vision, 75(2):247–266.
MULTI-CAMERA PEOPLE TRACKING WITH HIERARCHICAL LIKELIHOOD GRIDS
483