Gal, R., Shamir, A., and Cohen-Or, D. (2007a). Pose-
oblivious shape signature. IEEE TVCG, 13(2):261–
271.
Gal, R., Shamir, A., and Cohen-Or, D. (2007b). Pose-
oblivious shape signature. IEEE TVCG, 13(2):261–
271.
Goldberger, J., Gordon, S., and Greenspan, H. (2003). An
efficient image similarity measure based on approxi-
mations of KL-divergence between two gaussian mix-
tures. In Proc. on ICCV 2003, pages 487 –493 vol.1.
Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., and Ra-
mani, K. (2005). Three-dimensional shape searching:
state-of-the-art review and future trends. Computer-
Aided Design, 37(5):509–530.
Jian, B. and Vemuri, B. (2005). A robust algorithm for point
set registration using mixture of Gaussians. In Proc.
on ICCV 2005, volume 2, pages 1246 – 1251 Vol. 2.
Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2004).
Symmetry descriptors and 3D shape matching. In
Symposium on Geometry Processing.
Leibe, B., Leonardis, A., and Schiele, B. (2004). Combined
object categorization and segmentation with an im-
plicit shape model. In Workshop on Statistical Learn-
ing in Computer Vision, ECCV.
Leordeanu, M., Hebert, M., and Sukthankar, R. (2007).
Beyond local appearance: Category recognition from
pairwise interactions of simple features. In Proc. of
CVPR.
Liebelt, J. and Schmid, C. (2010). Multi-View Object Class
Detection with a 3D Geometric Model. In IEEE Con-
ference on CVPR.
Lowe, D. G. and Binford, T. O. (1983). Perceptual Orga-
nization as a Basis for Visual Recognition. In AAAI,
pages 255–260.
Mahmoudi, M. and Sapiro, G. (2009). Three-dimensional
point cloud recognition via distributions of geometric
distances. Graph. Models, 71(1):22–31.
Ohbuchi, R., Minamitani, T., and Takei, T. (2005). Shape-
similarity search of 3d models by using enhanced
shape functions. In IJCAT, volume 2005, pages 70–
85.
Ohtake, Y., Belyaev, A., and Seidel, H.-P. (2004). Ridge-
valley lines on meshes via implicit surface fitting.
ACM Trans. Graph., 23(3):609–612.
Opelt, A., Pinz, A., and Zisserman, A. (2006). A boundary-
fragment-model for object detection. In Proc. of
ECCV.
Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D.
(2002). Shape distributions. ACM Trans. Graph.,
21(4):807–832.
Park, J. S. and Han, J. H. (2002). Euclidean reconstruction
from contour matches. PR, 35:2109–2124.
Pauly, M., Keiser, R., and Gross, M. H. (2003). Multi-scale
feature extraction on point-sampled surfaces. Comput.
Graph. Forum, 22(3):281–290.
Peter, A. M. and Rangarajan, A. (2009). Information
Geometry for Landmark Shape Analysis: Unifying
Shape Representation and Deformation. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
31(2):337–350.
Ross, S. M. (2005). Introductory Statistics. Academic
Press, Inc., Orlando, FL, USA.
Schweighofer, G., Segvic, S., and Pinz, A. (2008). On-
line/realtime structure and motion for general camera
models. IEEE WACV, pages 1–6.
Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T.
(2004). The princeton shape benchmark. In Shape
Modeling International.
Shotton, J., Blake, A., and Cipolla, R. (2008). Multi-
Scale Categorical Object Recognition Using Contour
Fragments. IEEE Transactions on PAMI, 30(7):1270–
1281.
Sundar, H., Silver, D., Gagvani, N., and Dickinson, S.
(2003). Skeleton based shape matching and retrieval.
SMI ’03: Proceedings of the Shape Modeling Interna-
tional 2003, page 130.
Tangelder, J. and Veltkamp, R. (2007). A survey of content
based 3d shape retrieval methods. Multimedia Tools
and Applications.
Unger, M., Mauthner, T., Pock, T., and Bischof, H. (2009).
Tracking as segmentation of spatial-temporal volumes
by anisotropic weighted tv. In 7th International Con-
ference, EMMCVPR, volume 5681 of LNCS, Bonn,
Germany. Springer.
Wang, F., Vemuri, B. C., Rangarajan, A., and Eisenschenk,
S. J. (2008). Simultaneous Nonrigid Registration of
Multiple Point Sets and Atlas Construction. IEEE
Trans. PAMI, 30(11):2011–2022.
Xu, L. and Jordan, M. I. (1996). On convergence properties
of the em algorithm for gaussian mixtures. Neural
Comput., 8(1):129–151.
APPENDIX A
In this Appendix, we briefly describe how we build
3D contour fragments from stereo image sequences -
so called ‘3D contour clouds’. However, we point out,
that the method described in Section 4 will work on
all kinds of contours independent of the reconstruc-
tion method, as long as the 3D contour fragments rep-
resent the shape of a category.
In our approach, we combine stereo correspon-
dence on contour fragments and a robust Structure
and Motion analysis. The ‘3D contour cloud’ stereo
reconstruction process consists of several steps:
1. Image Acquisition - Dataset Generation. We
capture several stereo videos of different hand-
held objects which are manipulated in front of a
stereo rig (see an example in Section 5.2).
2. Preprocessing. To reconstruct just contours of
the hand-held objects and not contours of the
3D OBJECT CATEGORIZATION WITH PROBABILISTIC CONTOUR MODELS - Gaussian Mixture Models for 3D
Shape Representation
269