the cepstral algorithm (i.e. the 2-D FFT, a point trans-
form (log of the power spectrum) and the inverse 2-D
FFT) takes now only 0.43 ms on the GPU. FFT rou-
tine is eight times faster than a CPU version using
an optimized FFT running on one core of a 2.4-GHz
Core2 Quad Q6600 processor (Garland et al., 2008).
As the cepstral algorithm performs two FTT opera-
tions and the absolute log operation in parallel, the
speedup is more than sixteen times faster than a CPU
version.
By implementing the cepstral filter on a graphics
processing unit (GPU) using Compute Unified Device
Architecture (CUDA) we demonstrate that robust par-
allel algorithms that use to require dedicated hardware
are now available on common computers for real time
tasks. Using the GPU for low level tasks allows CPU
extra computational power for other high level tasks.
The cepstral filtering algorithm speed up is more than
sixteen times than on a CPU and the use of GPU Cep-
stral Filtering to perform vergence on binocular head
systems is, to our knowledge, an contribution for the
state-of-art. Future work includes the identification of
algorithms tasks that could gain on GPU paralleliza-
tion.
REFERENCES
Almeida, L. and Dias, J. (1999). Dense depth maps using
stereo vision head. In SIRS99 the 7th International
Symposium on Intelligent Robotic Systems, Coimbra,
Portugal.
Batista, J., Dias, J., Ara
´
ujo, H., and de Almeida, A. T.
(1995). The isr multi-degree of freedom active vi-
sion robot head: Design and calibration. In SMART
Program Workshop, pages 27–28. Instituto Superior
Tecnico, Lisboa, Portugal.
Betsis, D. and Lavest, J. (1994). Kinematic calibration of
the kth head-eye system. In ISRN KTH.
Bogert, B., Healy, M., and Tukey, J. W. (1963). The
quefrency alanysis of time series for echoes: Cep-
strum, pseudo-autocovariance, cross-cepstrurn, and
saphe cracking. In Proc. Symp. Time Series Analysis,
pages 209–243. John Wiley and Sons.
Brown, C. M. (1988). The rochester robot. Tech. Report
257.
Brown, M. Z., Burschka, D., and Hager, G. D. (2003). Ad-
vances in computational stereo. IEEE Trans. Pattern
Anal. Mach. Intell., 25(8):993–1008.
Coombs, D. J. (1992). Real-time gaze holding in binocu-
lar robot vision. PhD thesis, University of Rochester.
Dept. of Computer Science.
Dias, J., Paredes, C., Fonseca, I., Ara
´
ujo, H., Batista, J., and
de Almeida, A. T. (1998). Simulating pursuit with
machines– experiments with robots and artificial vi-
sion. IEEE Transactions on Robotics and Automation,
14(1):1–18.
Eklundh, J. O. and Bjrkman, M. (2005). Recognition of
objects in the real world from a systems perspective.
Kuenstliche Intelligenz, 19(2):12–17.
Ferreira, J. F., Lobo, J., and Dias, J. (2010). Bayesian real-
time perception algorithms on gpu - real-time imple-
mentation of bayesian models for multimodal percep-
tion using cuda. Journal of Real-Time Image Process-
ing, Special Issue, ISSN: 1861-8219:87–106.
Garland, M., Grand, S. L., Nickolls, J., Anderson, J., Hard-
wick, J., Morton, S., Phillips, E., Zhang, Y., and
Volkov, V. (2008). Parallel computing experiences
with cuda. IEEE Micro, 28(4):13–27.
Kwon, K.-C., Lim, Y.-T., Kim, N., Song, Y.-J., and Choi,
Y.-S. (2009). Vergence control of binocular stereo-
scopic camera using disparity information. Journal of
the Optical Society of Korea, 13(3).
Natale, L., Metta, G., and Sandini, G. (2002). Development
of auditory-evoked reflexes: Visuo-acoustic cues inte-
gration in a binocular head. Robotics and Autonomous
Systems, 39(2):87–106.
NVIDIA (2010). NVIDIA CUDA C Programming Guide
3.1. NVIDIA Corp.
OpenCV (2010). OpenCV (Open Source Computer Vision),
http://opencv.willowgarage.com.
Perdigoto, L., Barreto, J. P., Caseiro, R., and Ara
´
ujo, H.
(2009). Active stereo tracking of multiple free-moving
targets. In CVPR, pages 1494–1501.
POP, P. (2010). Project POP (Perception on Purpose),
http://perception.inrialpes.fr/POP/.
Scharstein, D. and Szeliski, R. (2002). A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms. International Journal of Computer Vision,
47(1-3):7–42.
Taylor, J., Olson, T., and Martin, W. (1994). Accurate ver-
gence control in complex scenes. CVPR, 94:540–545.
Yeshurun, Y. and Schwartz, E. L. (1989). Cepstral filtering
on a columnar image architecture: A fast algorithm
for binocular stereo segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-
11(7):759–767.
VISAPP 2011 - International Conference on Computer Vision Theory and Applications
670