Colmerauer, A. (1970). Les systmes-q ou un formalisme
pour analyser et synthtiser des phrases sur ordinateur.
dpartement d’informatique de l’Universit de Montral,
publication interne, 43.
Columbo, C., Bimbo, A. D., and Pala, P. (1999). Seman-
tics in visual information retrieval. IEEE Multimedia,
6(3):38–53.
Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray,
C. (2004). Visual categorization with bags of key-
points. In Proc. of the ECCV Workshop on Statistical
Learning for Computer Vision.
Csurka, G., Skaff, S., Marchesotti, L., and Saunders, C.
(2010). Learning moods and emotions from color
combinations. In Proc. of the Indian Conference on
Computer Vision, Graphics, and Image Processing.
Daoud, D. (2006). Il faut et on peut construire des systmes
de commerce lectronique interface en langue na-
turelle restreints (et multilingues) en utilisant des mth-
odes orientes vers les sous-langages et le contenu.
PhD thesis, Universit
´
e Joseph Fourier.
Datta, R., Joshi, D., Li, J., and Wang, J. (2008a). Image
retrieval: Ideas, influences, and trends of the new age.
ACM Computing Surveys, 40(2):1–60.
Datta, R., Joshi, D., Li, J., and Wang, J. Z. (2006). Studying
aesthetics in photographic images using a computa-
tional approach. In Proc. of the European Conference
on Computer Vision, volume 3, pages 288–301.
Datta, R., Li, J., and Wang, J. Z. (2008b). Algorithmic infer-
encing of aesthetics and emotion in natural images. In
Proc. of the IEEE International Conference on Image
Processing, San Diego, CA.
Davis, B. and Lazebnik, S. (2008). Analysis of human at-
tractiveness using manifold kernel regression. In Proc.
of the IEEE International Conference on Image Pro-
cessing.
Dellandr
´
ea, E., Liu, N., and Chen, L. (2010). Classification
of affective semantics in images based on discrete and
dimensional models of emotions. Proc. of the Inter-
national Workshop on Content-Based Multimedia In-
dexing, pages 1–6.
Desolneux, A., Moisan, L., and Morel, J.-M. (2004). See-
ing, Thinking and Knowing, chapter Gestalt Theory
and Computer Vision, pages 71–101. A. Carsetti ed.,
Kluwer Academic Publishers.
Dunker, P., Nowak, S., Begau, A., and Lanz, C. (2009).
Content-based mood classification for photos and mu-
sic. Proc. of the ACM International Conference on
Multimedia Information Retrieval, pages 97–104.
Falaise, A., Rouquet, D., Schwab, D., Blanchon, H., and
Boitet, C. (2010). Ontology driven content extraction
using interlingual annotation of texts in the OMNIA
project. In Proc. of the International Workshop On
Cross Lingual Information Access, Peking, China.
Fedorovskaya, E., Neustaedter, C., and Wei, H. (2008). Im-
age harmony for consumer images. In Proc. of the
IEEE International Conference on Image Processing.
Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang,
Q., Dom, B., Gorkani, M., Hafner, J., Lee, D.,
Petkovic, D., Steele, D., and Yanker, P. (1995). Query
by image and video content: the QBIC system. IEEE
Computer, 28:23–32.
Guillaumin, M., Mensink, T., Verbeek, J., and Schmid, C.
(2009). Tagprop: Discriminative metric learning in
nearest neighbor models for image auto-annotation. In
Proc. of the IEEE International Conference on Com-
puter Vision.
Itten, J. (1961). The art of color. Otto Maier Verlab, Ravens-
burg, Germany.
Jacobsen, T., Schubotz, R. I., Hfel, L., and v. Cramon,
D. Y. (2006). Brain correlates of aesthetic judgment
of beauty. NeuroImage, 29:276–285.
Jegou, H., Douze, M., and Schmid, C. (2008). Hamming
embedding and weak geometric consistency for large
scale image search. In Proc. of the European Confer-
ence on Computer Vision.
Jeon, J., Lavrenko, V., and Manmatha, R. (2003). Au-
tomatic image annotation and retrieval using cross-
media relevance models. In Proc. of the Annual ACM
SIGIR conference on Research and development in in-
formaion retrieval.
Jesus Cardeosa et al. (2009). The U++ con-
sortium (accessed on september 2009).
http://www.unl.fi.upm.es/consorcio/index.php.
Kasutani, E. (2007). Image retrieval apparatus and image
retrieving method, US Patent application.
Laaksonen, J., Koskela, M., and Oja, E. (2002). Picsom
self-organizing image retrieval with mpeg-7 content
descriptions. IEEE Transactions on Neural Networks,
13:841–853.
Li, X., Chen, L., Zhang, L., Lin, F., and Ma, W. (2006).
Image annotation by large-scale content based image
retrieval. In Proc. of the ACM International Confer-
ence on Multimedia.
Loui, A., Wood, M. D., Scalise, A., and Birkelund, J.
(2008). Multidimensional image value assessment
and rating for automated albuming and retrieval. In
Proc. of the IEEE International Conference on Image
Processing.
Monay, F. and Gatica-Perez, D. (2003). On image auto-
annotation with latent space models. In Proc. of the
International Conference On Multimedia.
M
¨
uller, H., Clough, P., Deselaers, T., and Caputo, B. (2010).
Imageclef- experimental evaluation in visual informa-
tion retrieval. In The Information Retrieval Series.
Springer.
Nowak, S. and Lukashevich, H. (2010). Multilabel clas-
sification evaluation using ontology information. In
Proc. of the International Conference on Multimedia
Information Retrieval, pages 35–44.
Perronnin, F. and Dance, C. (2007). Fisher kernels on vi-
sual vocabularies for image categorization. In Proc. of
the IEEE Conference on Computer Vision and Pattern
Recognition.
Perronnin, F., Liu, Y., Sanchez, J., and Poirier, H. (2010).
Large-scale image retrieval with compressed fisher
vectors. In Proc. of the IEEE Conference on Com-
puter Vision and Pattern Recognition.
MULTIMODAL SEARCH FOR GRAPHIC DESIGNERS
175