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Abstract: In the field of foliage or vegetation modeling for computer graphics, algorithms for parametric modeling of 
trees have largely focused on branching mechanisms with little emphasis on modeling the base of the trunk, 
especially the trunk-root junctions. Roots and trunk-root junctions that appear prominently above the ground 
in the case of many species of trees such as the Ficus macrophylla and the Picea sitchensis as a result of age 
and soil erosion are usually completely neglected by traditional trunk modeling methods. In this paper, we 
introduce a novel parametric modeling scheme to build such trunk-root junctions, while providing for an 
elegant framework to construct the bases of trunks and branches in order to provide better characterization 
for a variety of flora species. The paper also describes novel schemes for generating branch junctions and 
for rendering tree barks. 

1 INTRODUCTION 

There have been significant developments in the 
area of foliage or vegetation modeling in recent 
years (Federl and Prusinkiewicz’ 04, Lefebvre and 
Neyret ’02). The availability of multi-core GPU 
systems has widened the possibilities for realistic 
rendering of foliage. While template or model multi-
resolution rendering systems enable fast 
visualization of a variety of plant and tree species, 
they are nevertheless restricted due to the lack of 
uniqueness of each rendered entity. Parametric 
models on the other hand, can create a variety of 
shapes and unique entities within a single tree sub-
species or across a broad range of possible species. 
Parametric L-systems have long been used for 
modeling tree branches and trunks. However, little 
attention has been dedicated to the parametric 
modeling of roots of trees and more importantly 
trunk-root junctions that are visible above the 
ground.  

Algorithms for parametric modeling of trees 
have largely focused on branching mechanisms with 
little emphasis on modeling the base of the trunk, 
especially the trunk-root junctions. Roots and trunk-
root junctions that appear prominently above the 
ground in the case of many species of trees such as 
the Ficus macrophylla and the Picea sitchensis as a 

result of age and soil erosion are usually completely 
neglected by traditional trunk modeling methods. 
Figures 1 and 2 depict sample images of trunk-root 
junctions that are visible above the ground. In this 
paper, we introduce a novel parametric modeling 
scheme to build such trunk-root junctions, while 
providing for an elegant framework to construct the 
bases of trunks and branches in order to provide 
better characterization for a variety of flora species. 

This work is largely focused on modeling 
structural components of a generic tree-like 
structure, with particular emphasis on root-trunk 
junctions.  The algorithm is based on a number of 
user-modifiable parameters that can be used to 
generate a variety of plant species.  Fundamentally, 
the structural components, angular limitations, and 
branching mechanisms may be varied to more 
accurately model different kinds of tree growth, soil 
and environmental effects.  

Modeling of branches and root-trunk junctions, 
together with a bio-inspired algorithm for rendering 
barks and branches form specific contributions of 
this effort. 
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Figure 1: A Moreton Bay Fig (Ficus macrophylla) tree in 
Australia [Src: DO'Neil, Wikimedia]. 

 
Figure 2: A Sitka Spruce (Picea sitchensis) tree in Canada 
[Src: Cowichan Bay Journal]. 

2 RELATED WORK 

Extensive work has been carried out on rendering 
algorithms for foliage, originating from ground 
breaking work by Przemyslaw Prusinkiewicz. The 
majority of these algorithms can be classified into 
(a) Mono-scale representation – with branching 
structure based on (i) cylinders (Prusinkiewicz and 
Lindenmayer ‘90) (ii) cone-spheres (iii) generalized 
cylinders (Bloomenthal ’95) (iv) implicit surfaces 
(Hart and Baker ’96) (iv) sub-division surfaces, bark 
modeling based on (i) bump mapping (ii) 
displacement mapping (iii) volumetric textures 
(Neyret ’98) (Lefebvre and Neyret ’02) (iv) 
polygons (iv) texture mapping, (b) Global 
representations such as billboards, slices (c) 
Structure based and Spatial based multi-scale 
representation systems using hierarchical billboards, 
volumetric texture slices (Federl and Prusinkiewicz 
’04), particle systems, volumetric point 
representation systems etc.  

While the focus of the method presented in this 
paper caters to mono-scale representation, it 
specifically focuses on modeling of trunk-root 
junctions, which has hardly been modeled 
parametrically in the past. The only work similar to 
the one in this paper can be attributed to Jijoon Kim 
2006. The method presented in this paper for 
modeling of barks is similar to methods such as that 
of volumetric textures and polygons. L-Systems 
based foliage rendering software L-Studio and Xfrog 
can use algorithms developed in this paper as 
plugins for realistic geometric modeling. 

3 COMPONENT MODELING 

The structural components of plants that are dealt 
with in this paper include stems (trunks, branches), 
barks and root-trunk junctions.  The generative 
modeling presented in this paper is primarily 
focused at achieving realistic stems, as this poses 
sufficient unsolved challenges for modeling. This 
paper bases its algorithms for geometrically 
designing a tree by delving into the natural growth 
of foliage. Two main natural phenomena or courses 
of events in the growth of a tree, namely concentric 
trunk growth and root-trunk junction growth have 
been incorporated into the local geometry modeling. 
These are explained in sections 3.1.1 and 3.2.1.   

3.1 Trunk-Root Junction Modeling 

Trunk-Root junctions refer to the base of the tree 
where the trunk segment extends through the ground 
to form the roots of the tree. In the case of several 
common species of trees and plants such as the date 
palm (Phoenix dactylifera) and the bamboo 
(Bambuseae), the diameter of the trunk remains 
more or less uniform from the base to the top. More 
importantly, the trunk does not exhibit an expansion 
at the trunk-root junction. Traditional parametric 
branch and trunk modeling algorithms are successful 
in modeling such systems. However, in the case of 
trees such as in Figures 1 and 2, this is not true. The 
trunk expands into several diverging branches at the 
trunk-root junction, which cannot be modeled using 
a cylindrical geometric framework.   

3.1.1 Phenomenon 

The expansive trunk-root junction forms the first 
growth phenomenon considered in this paper. In the 
case of several species of trees, the roots rise up as 
they grow old. Since the trunk is cylindrical and the 
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roots exhibit semi-random cylindrical explosion 
geometry, the base of the tree can be modeled with 
hypocycloids such as the deltoid, astroid etc. with 
random perturbations (Figure 3). 

 
Figure 3: Family of hypocycloids – the three and four 
pronged geometries are called deltoid and astroid 
respectively.  

3.1.2 Algorithm 

Hypocycloids are very convenient to model trunk-
root junctions. The number of limbs in the 
hypocycloid can be varied to produce a variety of 
branching systems at the trunk-root junction. This, 
when combined with the random perturbation of the 
surface contour can yield realistic trunk rendering. 
Since the trunk of the tree is best modeled as a 
cylindrical structure, it is necessary to model the 
continuity between the hypocycloidal trunk-root 
junction and the cylindrical trunk. This can be done 
by modeling the intermediate region as a folium 
with multiple limbs. For the case of the astroidal 
trunk-root junction, a quadrifolium is best suited for 
the transition to the cylindrical trunk. The 
quadrifolium is a rose or rhodonea, generated as a 
pedal of the astroid. Pedals can be obtained as the 
locus of arbitrary points, one each on the tangents of 
a curve, such that the line from a given vertex to the 
point and the tangent are perpendicular. An 
interpolation scheme such as the spline or bi-cubic 
method can be used to define intermediate points.  

While the above scheme is well suited for the 
generation of a wide variety of trunk-root junctions, 
we emphasize the use of the astroid for modeling the 
trunk-root junction in this paper. This choice of 
hypocycloid for the modeling is the result of the 
unique property of the astroid, namely its status as 
the envelope of co-axial ellipses whose sum of 
major and minor axes is constant (Xahlee, Special 
Curves). Astroids are also the evolutes of ellipses. 
Astroids belong to a class of curves called the 
hypocycloids with cusps pointing away from the 
vertex. Hypocycloids are a special case of the 
Roulette family, the curves that roll upon other 
curves to give the locus of circles. While the 
fundamental method to create an astroid is as the 
trace of a point on a circle of radius ‘r’ rolling inside 
a fixed circle of radius 4 ‘r’ or 4/3 ‘r’ (using single 
or double generation mechanisms respectively), the 

ellipse method enables one to construct an astroid 
analytically by locus generation. A simpler way to 
construct the astroid based on ellipses makes use of 
the Trammel of Archimedes - a mechanical devise 
where a fixed bar with endings sliding on two 
perpendicular tracks. The envelope of the moving 
bar is then the astroid. A fixed point on the bar 
traces out an ellipse. The axes of the astroid are 
defined to be the two perpendicular lines passing its 
cusps. The length of the tangent cut by the axes is 
constant. Thus the astroid can be constructed as the 
envelope of co-axial ellipses. 

By reducing the difference between the lengths 
of the semi-major and semi-minor axes of the 
ellipse, characterized by the eccentricity, the ellipse 
can be made to converge to a circle when the 
eccentricity approaches one or the difference 
becomes zero. This gives a natural mechanism for 
defining and extrapolating the astroid to a circle, 
thus rendering a smooth transition from the astroidal 
trunk-root junction to the cylindrical trunk (with a 
roughly circular cross-section). The algorithm makes 
use of this approach to build the trunk of the tree. It 
creates an envelope of ellipses of equal semi-major 
and semi-minor axes length sums at every z level, 
with this sum varying with the level, thus producing 
a natural transition from astroid to ellipse (Stand 
Curves). 

The algorithm also implements a semi-
randomized transition to produce more organic 
irregularity in the trunk and branches. The family of 
asteroids and quadrifoliums are shown in Figure 4. 
The mathematical formulation of these geometric 
entities is depicted in Table 1. 

 
Figure 4: (A) Family of astroids; (B)  Astroid as envelope 
of ellipses; (C)  Quadrifolium. 
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Table 1: Mathematical modeling of the ellipse, astroid and 
the quadrifolium. 

Ellipse Parametric: {a*cos(t), b*sin(t)} 0< t ≤ 2 π 
Cartesian: x2/a + y2/b = 1 b=a*(1-e2)1/2 

Astroid 
Parametric: {cos(t)3, sin(t)3}, 0 < t ≤ 2 * π 
Cartesian: (x2 +y2 -1)3 + 27 * x2 * y2 = 0 
Equivalent equation: x2/3 + y2/3 = 1 

Rose 
(Rhodonea) 

Polar equation: r=cos(p/q*θ);  p, q are 
integers (typical range: 1 to 11) 
Quadrifolium: p/q =2 
Cartesian Equation for a 4-pedaled rose 
r=cos(2*θ) rotated by 2*π/8 is 
(x2+y2)3==4*x2*y2 

3.2 Trunk Bark Modeling 

Traditional methods for modeling the trunk bark 
involve the use of bump maps. In this paper, an 
alternate scheme of geometry based parametric 
modeling of the bark using concentric layers is 
presented.   

3.2.1 Phenomenon 

Plants generally grow as cylindrical structures above 
the ground once their roots have developed. The 
local geometry of the trunk can be formulated as 
cylinders. As they grow, the bark expands in 
concentric circles. The most actively growing part of 
the trunk is the innermost ring, which gets pushes 
out the outer rings. The cylindrical rings at the outer 
layer are the oldest and this phenomenon is used in 
the dating of trees. Because the outer layers are the 
oldest, the bark eventually loses flexibility and 
becomes taut.  The pressure from the inner cylinders 
causes the external bark to crack up. Crevice-like 
structures are formed. Since pressure is directed 
radially outward from an equidistant center, the 
cracks in the bark appear at points almost equidistant 
on the circumference of the bark. The radial pressure 
also causes the vertical cleavage lines. Furthermore, 
the effects of weathering create random fissures on 
the bark. 

3.2.2 Algorithm 

Incorporating this understanding into our algorithm, 
we generate the fissured geometry of the bark: a 
superimposition of two cylindrically varying 
structures. The face or planes of the tessellated 
polygons on the outer structure are shrunk to smaller 
triangles to simulate the cracking up of the bark. 
This is done by reducing the dimensions of the 
triangles along the vertical direction (simulating a 
radial bark expansion along the cross-section of the 

trunk) in a pseudo-random fashion. A randomized 
polygon removal scheme has been employed to 
produce the effect of weathered fissures. In other 
words, some polygonal along the vertical dimension 
of the trunk are arbitrarily removed. These effects 
result in the fissured bark geometry demonstrated in 
Figure 5. Application of different texture maps to the 
two cylinders yields the effect of a chiseled outer 
bark on a younger inner bark.  

3.3 Branch Modeling 

Branches are modeled as cylinders with diameters 
constrained by parameters of radii and tilt. Three 
specific issues were considered in the generation of 
the branches. Combining cylinders at junctions is a 
cumbersome process and involves a lot of projection 
geometry. In nature, branch junctions can be 
geometrically categorized as:  T-junctions, Y-
junctions and I-junctions.  

T-junctions occur when a branch grows out of 
another, which extends much further. Such junctions 
are modeled as composing of cylindrical branches 
with semi-randomly varying radii and sinusoidally 
varying base, embedded at a certain distance into the 
parent branch, thereby producing smooth transition 
geometry.  

For the I-sections or continuation branches, 
which chiefly occur when the branches have low 
radii of curvature or a high degree of curvature, 
smoothing effects are produced by extrapolating the 
parent cylinder and semi-randomly varying the 
gradient of inclination weighted by the parent 
cylinder radius to yield the child cylinder top radius, 
rather than create two separate cylinders.  

For the Y-sections, the joint is more complex, as 
the top radius of the parent cylinder and the bottom 
radius of the child are different. Mounting the child 
cylinders on the parent would produce huge areas of 
discontinuity. This issue has been solved by using a 
sinusoidally varying base for the child cylinder, as in 
the case of the T-junction, and creating a spherical 
geometry atop the parent cylinder. 

4 IMPLEMENTATION 
ISSUES –GEOMETRY 
AND TRIANGULATION 

Parameterization and generalization of various 
aspects of the double-barked geometric tree model 
enables creation of different types of trees. Limits of 
feasible space and time complexity involved in the 
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execution of the program required the development 
of optimization parameters. These include the 
Triangle Reduction Factor, the factor by which the 
number of triangles is reduced for rendering (by 
absolute or relative levels), the Curve Speed-up 
Factor that controls the number of points for the 
ellipse generator, the Generator Ellipse Count, that 
controls the number of ellipses that form the Astroid 
or Circle and the Base Randomizer Factor that 
determines the number of triangles in the complex 
astroidal base. 

Various tree type characterizing parameters 
include the Base Spread Factor which determines 
the ratio of the base to the trunk of the tree, the 
Height of Trunk parameter, the Chisel mode that 
allows one to specify if the outer bark is to be 
shrunk, randomly chiseled out or both, two Chisel 
factors to control the chiseling in the two modes, the 
Base and the Top Radii, the Bark Depth Parameter, 
that determines the depth of the inner bark from the 
outer one and the Tilt spread to create a tilted tree. 

After the generation of the inner and outer bark 
geometrical models as envelope of ellipses with 
varying major and minor axes and necessary tilting 
of both the inner and outer bark cylinders, the 
resulting geometry is Delaunay triangulated and 
converted to patches. The Delaunay triangulation of 
a point set is a collection of edges satisfying an 
"Empty Circle" property (i.e., for each edge we can 
find a circle containing the edge's endpoints but not 
containing any other points (UCI – Delaunay)). The 
outer bark triangles, after performing necessary 
limiting by count, are scaled, and some triangles are 
eliminated based on chisel ratios, thus rendering the 
natural bark effect. 

Normals for the triangles are generated by simple 
cross-product of the edges. In order to produce an 
elegant look with Phong shading, the normal values 
at each vertex are calculated as the average of the 
normals of the different triangles that share the 
vertex. 

 
Figure 5: Trunk-Root Modeling. 

Implementation of the local geometric modeling of 
the branches was done similar to that of the trunk, 
but with a single bark structure and the addition of 

functionality to solve the problem of the varying 
junctions. Additional parameters include junction 
type, previous radii, initial and final center 
coordinates. 

 
Figure 6: Double-Bark Modeling. 

 
Figure 7: Branch Modeling. 

 

Figure 8: Branch Modeling with Color Mapping. 

5 RESULTS 

Figures 5 and 6 demonstrate the modeling of trunk 
using the trunk-root junction algorithm and the 
double bark algorithm for a variety of parameters. 
While the generated visualizations presented in this 
paper for the trunk-root geometry largely consists of 
convex boundaries, the system can also be used to 
generate junctions with concave boundaries. The 
concave boundaries can be obtained by reducing the 
bounds on the extreme values used for the ellipse 
axes lengths in the envelope generation process. 
This is shown in Figure 4B. Alternatively, 
quadrifoliums (Figure 4C) can be used, depending 
upon the tree species to be rendered. Figure 7 shows 
the modeling of branches using the randomized 
cylinder approach and Figure 8 after color mapping. 
Figure 9 demonstrates the final rendering of the 
entire tree structures using a basic tree rendering 
program taking input from the modeled trunk-root 
junctions and branches as templates for the 
rendering. It can be seen that the final rendering, 
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though limited in terms of visual quality due to 
simplicity of the tree renderer, provides realistic 
visualization of the geometry of trees similar to fig 
and spruce, that posses trunk-root junctions above 
the ground.   

 

 
Figure 9: Complete Tree Rendering. 

6 FUTURE WORK 

The next step involves the optimization of the code 
for real-time rendering of forests and other foliage 
using GPU systems. Development of plugins for 
usage with Xfrog, Maya and L-Studio will enable 
practical testing of the developed algorithms on a 
larger scale. The developed algorithms can also be 
extended to help render other types of trees with 
unique geometry characterization requirements for 
modeling.  
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